Intersection pairings in moduli spaces of holomorphic bundles on a Riemann surface.
We present a way of thinking of exponential farnilies as geodesic surfaces in the class of positive functions considered as a (multiplicative) sub-group G+ of the group G of all invertible elements in the algebra A of all complex bounded functions defined on a measurable space. For that we have to study a natural geometry on that algebra. The class D of densities with respect to a given rneasure will happen to be representatives of equivalence classes defining a projective space in A. The natural...
Let X be a differentiable manifold endowed with a transitive action α: A×X→X of a Lie group A. Let K be a Lie group. Under suitable technical assumptions, we give explicit classification theorems, in terms of explicit finite dimensional quotients, of three classes of objects: equivalence classes of α-invariant K-connections on X α-invariant gauge classes of K-connections on X, andα-invariant isomorphism classes of pairs (Q,P) consisting of a holomorphic Kℂ-bundle Q → X and a K-reduction P of Q (when...
We present a generalization of the concept of semiholonomic jets within the framework of higher order prolongations of a fibred manifold. In this respect, a compilation of our 2-fibred manifold approach with the methods of natural operators theory is used.
We give a description of compact Einstein-Weyl manifolds in terms of Killing tensors.
We classify all F2Mm1, m2, n1, n2-natural operators Atransforming projectable-projectable torsion-free classical linear connections ∇ on fibered-fibered manifolds Y of dimension (m1,m2, n1, n2) into rth order Lagrangians A(∇) on the fibered-fibered linear frame bundle Lfib-fib(Y) on Y. Moreover, we classify all F2Mm1, m2, n1, n2-natural operators B transforming projectable-projectable torsion-free classical linear connections ∇ on fiberedfibered manifolds Y of dimension (m1, m2, n1, n2) into Euler...
In this paper we study the geometry of direct connections in smooth vector bundles (see N. Teleman [Tn.3]); we show that the infinitesimal part, , of a direct connection τ is a linear connection. We determine the curvature tensor of the associated linear connection As an application of these results, we present a direct proof of N. Teleman’s Theorem 6.2 [Tn.3], which shows that it is possible to represent the Chern character of smooth vector bundles as the periodic cyclic homology class of a...