Closed similarity manifolds.
In this paper three dimensional real hypersurfaces in non-flat complex space forms whose k-th Cho operator with respect to the structure vector field ξ commutes with the structure Jacobi operator are classified. Furthermore, it is proved that the only three dimensional real hypersurfaces in non-flat complex space forms, whose k-th Cho operator with respect to any vector field X orthogonal to structure vector field commutes with the structure Jacobi operator, are the ruled ones. Finally, results...
A new class of -dimensional Lorentz spaces of index is introduced which satisfies some geometric conditions and can be regarded as a generalization of Lorentz space form. Then, the compact space-like hypersurface with constant scalar curvature of this spaces is investigated and a gap theorem for the hypersurface is obtained.
We prove that a connected Riemannian manifold admitting a pair of non-trivial Einstein-Weyl structures with constant scalar curvature is either Einstein, or the dual field of is Killing. Next, let be a complete and connected Riemannian manifold of dimension at least admitting a pair of Einstein-Weyl structures . Then the Einstein-Weyl vector field (dual to the -form ) generates an infinitesimal harmonic transformation if and only if is Killing.
Data una varietà Riemanniana orientata , il fibrato principale di basi ortonormali positive su ha una parallelizzazione canonica dipendente dalla connessione di Levi-Civita. Questo fatto suggerisce la definizione di una classe molto naturale di strutture quasi-complesse su . Dopo le necessarie definizioni, discutiamo qui l'integrabilità di queste strutture, esprimendola in termini della struttura Riemanniana .
This paper studies conformal and related changes of the product metric on the product of two almost contact metric manifolds. It is shown that if one factor is Sasakian, the other is not, but that locally the second factor is of the type studied by Kenmotsu. The results are more general and given in terms of trans-Sasakian, α-Sasakian and β-Kenmotsu structures.