-Capacity and -Hyperbolicity of Submanifolds.
Robert C. Reilly a obtenu des majorations de la première valeur propre du laplacien pour les hypersurfaces de l’espace euclidien. De plus, il a montré que le cas d’égalité dans ces majorations est atteint uniquement pour les sphères géodésiques. Dans cet exposé, nous nous intéressons au problème de pincement pour ces majorations. Nous montrons que si le cas d’égalité est presque atteint, alors l’hypersurface est proche d’une sphère, en un sens que nous préciserons. Nous déduisons ensuite des résultats...
In this paper, we give a sharp estimate on the dimension of the space of polynomial growth harmonic functions with fixed degree on a complete Riemannian manifold, under various assumptions.
In this paper we perform a fine blow up analysis for a fourth order elliptic equation involving critical Sobolev exponent, related to the prescription of some conformal invariant on the standard sphere . We derive from this analysis some a priori estimates in dimension and . On these a priori estimates, combined with the perturbation result in the first part of the present work, allow us to obtain some existence result using a continuity method. On we prove the existence of at least one...
We study the problem of prescribing a fourth order conformal invariant on higher dimensional spheres. Particular attention is paid to the blow-up points, i.e. the critical points at infinity of the corresponding variational problem. Using topological tools and a careful analysis of the gradient flow lines in the neighborhood of such critical points at infinity, we prove some existence results.
La méthode de « recollement » permettant de trouver des solutions des équations des contraintes relativistes est décrite. En particulier, on expose la méthode de Corvino-Schoen pour construire des familles de solutions sur une variété non-compacte avec géométrie prescrite sur un bout asymptotique, en insistant sur le recollement « non-localisé ». Une liste de résultats obtenus par divers auteurs à partir de telles techniques est alors fournie, incluant la question du recollement de métriques...
On étudie quelques équations complètement non linéaires issues de la géométrie conforme. Par une méthode de flot géométrique, on prouve l’existence des solutions. En utilisant ce résultat analytique, on obtient un théorème sur la topologie de la variété : soit une variété riemannienne compacte de dimension 3. S’il existe une metrique à courbure scalaire strictement positive telle que l’intégrale de la -courbure scalaire soit positive, alors est difféomorphe à un quotient de la sphere.