Previous Page 24

Displaying 461 – 479 of 479

Showing per page

Weyl submersions of Weyl manifolds

Fumio Narita (2007)

Colloquium Mathematicae

We define Weyl submersions, for which we derive equations analogous to the Gauss and Codazzi equations for an isometric immersion. We obtain a necessary and sufficient condition for the total space of a Weyl submersion to admit an Einstein-Weyl structure. Moreover, we investigate the Einstein-Weyl structure of canonical variations of the total space with Einstein-Weyl structure.

Wintgen inequalities on Legendrian submanifolds of generalized Sasakian-space-forms

Shyamal K. Hui, Richard S. Lemence, Pradip Mandal (2020)

Commentationes Mathematicae Universitatis Carolinae

A submanifold M m of a generalized Sasakian-space-form M ¯ 2 n + 1 ( f 1 , f 2 , f 3 ) is said to be C -totally real submanifold if ξ Γ ( T M ) and φ X Γ ( T M ) for all X Γ ( T M ) . In particular, if m = n , then M n is called Legendrian submanifold. Here, we derive Wintgen inequalities on Legendrian submanifolds of generalized Sasakian-space-forms with respect to different connections; namely, quarter symmetric metric connection, Schouten-van Kampen connection and Tanaka-Webster connection.

η -Ricci Solitons on η -Einstein ( L C S ) n -Manifolds

Shyamal Kumar Hui, Debabrata Chakraborty (2016)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

The object of the present paper is to study η -Ricci solitons on η -Einstein ( L C S ) n -manifolds. It is shown that if ξ is a recurrent torse forming η -Ricci soliton on an η -Einstein ( L C S ) n -manifold then ξ is (i) concurrent and (ii) Killing vector field.

ϕ -symmetric spaces and weak symmetry

Jürgen Berndt, Lieven Vanhecke (1999)

Bollettino dell'Unione Matematica Italiana

Proviamo che tutti gli spazi semplicemente connessi ϕ -simmetrici sono debolmente simmetrici e quindi commutativi.

Currently displaying 461 – 479 of 479

Previous Page 24