Previous Page 2

Displaying 21 – 32 of 32

Showing per page

Spectrum generating on twistor bundle

Thomas Branson, Doojin Hong (2006)

Archivum Mathematicum

Spectrum generating technique introduced by Ólafsson, Ørsted, and one of the authors in the paper (Branson, T., Ólafsson, G. and Ørsted, B., Spectrum generating operators, and intertwining operators for representations induced from a maximal parabolic subgroups, J. Funct. Anal. 135 (1996), 163–205.) provides an efficient way to construct certain intertwinors when K -types are of multiplicity at most one. Intertwinors on the twistor bundle over S 1 × S n - 1 have some K -types of multiplicity 2. With some additional...

Sur les variétés CR de dimension 3 et les twisteurs

Olivier Biquard (2007)

Annales de l’institut Fourier

Nous montrons qu’une variété CR strictement pseudoconvexe, de dimension 3, analytique réelle, est le bord à l’infini d’une unique métrique d’Einstein autoduale, définie dans un petit voisinage. La preuve s’appuie sur une construction nouvelle d’espaces de twisteurs à l’aide de courbes rationnelles singulières.

Twistor forms on Kähler manifolds

Andrei Moroianu, Uwe Semmelmann (2003)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Twistor forms are a natural generalization of conformal vector fields on riemannian manifolds. They are defined as sections in the kernel of a conformally invariant first order differential operator. We study twistor forms on compact Kähler manifolds and give a complete description up to special forms in the middle dimension. In particular, we show that they are closely related to hamiltonian 2-forms. This provides the first examples of compact Kähler manifolds with non–parallel twistor forms in...

Twistor transforms of quaternionic functions and orthogonal complex structures

Graziano Gentili, Simon Salamon, Caterina Stoppato (2014)

Journal of the European Mathematical Society

The theory of slice-regular functions of a quaternion variable is applied to the study of orthogonal complex structures on domains Ω of 4 . When Ω is a symmetric slice domain, the twistor transform of such a function is a holomorphic curve in the Klein quadric. The case in which Ω is the complement of a parabola is studied in detail and described by a rational quartic surface in the twistor space P 3 .

Currently displaying 21 – 32 of 32

Previous Page 2