Chen inequalities for submanifolds of a locally conformal almost cosymplectic manifold with a semi-symmetric metric connection.
Some examples of slant submanifolds of almost product Riemannian manifolds are presented. The existence of a useful orthonormal basis in proper slant submanifolds of a Riemannian product manifold is proved. The sectional curvature, the Ricci curvature and the scalar curvature of submanifolds of locally product manifolds of almost constant curvature are obtained. Chen-Ricci inequalities involving the Ricci tensor and the squared mean curvature for submanifolds of locally product manifolds of almost...
In the theory of submanifolds, the following problem is fundamental: establish simple relationships between the main intrinsic invariants and the main extrinsic invariants of submanifolds. The basic relationships discovered until now are inequalities. To analyze such problems, we follow the idea of C. Udrişte that the method of constrained extremum is a natural way to prove geometric inequalities. We improve Chen's inequality which characterizes a totally real submanifold of a complex space form....
In this paper three dimensional real hypersurfaces in non-flat complex space forms whose k-th Cho operator with respect to the structure vector field ξ commutes with the structure Jacobi operator are classified. Furthermore, it is proved that the only three dimensional real hypersurfaces in non-flat complex space forms, whose k-th Cho operator with respect to any vector field X orthogonal to structure vector field commutes with the structure Jacobi operator, are the ruled ones. Finally, results...
A fundamental question about hypersurfaces in the Euclidean space is to decide if the sphere is the only compact hypersurface (embedded or immersed) with constant higher order mean curvature Hr, for some r = 1, ..., n.
Submanifolds with parallel mean curvature vector play important roles in differential geometry, theory of harmonic maps as well as in physics. Spatial surfaces in 4D Lorentzian space forms with parallel mean curvature vector were classified by B. Y. Chen and J. Van der Veken in [9]. Recently, spatial surfaces with parallel mean curvature vector in arbitrary pseudo-Euclidean spaces are also classified in [7]. In this article, we classify spatial surfaces with parallel mean curvature vector in pseudo-Riemannian...
Let Mⁿ (n ≥ 3) be an n-dimensional complete super stable minimal submanifold in with flat normal bundle. We prove that if the second fundamental form A of M satisfies , where α ∈ [2(1 - √(2/n)), 2(1 + √(2/n))], then M is an affine n-dimensional plane. In particular, if n ≤ 8 and , d = 1,3, then M is an affine n-dimensional plane. Moreover, complete strongly stable hypersurfaces with constant mean curvature and finite -norm curvature in ℝ⁷ are considered.
In this note we show that any complete Kähler (immersed) Euclidean hypersurface must be the product of a surface in with an Euclidean factor .