Displaying 261 – 280 of 553

Showing per page

Normally flat semiparallel submanifolds in space forms as immersed semisymmetric Riemannian manifolds

Ülo Lumiste (2002)

Commentationes Mathematicae Universitatis Carolinae

By means of the bundle of orthonormal frames adapted to the submanifold as in the title an explicit exposition is given for these submanifolds. Two theorems give a full description of the semisymmetric Riemannian manifolds which can be immersed as such submanifolds. A conjecture is verified for this case that among manifolds of conullity two only the planar type (in the sense of Kowalski) is possible.

On 1-harmonic functions.

Wei, Shihshu Walter (2007)

SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]

On complete linear Weingarten hypersurfaces in locally symmetric Riemannian manifolds

Cícero P. Aquino, Henrique F. de Lima, Fábio R. dos Santos, Marco Antonio L. Velásquez (2015)

Commentationes Mathematicae Universitatis Carolinae

Our aim is to apply suitable generalized maximum principles in order to obtain characterization results concerning complete linear Weingarten hypersurfaces immersed in a locally symmetric Riemannian manifold, whose sectional curvature is supposed to obey standard constraints. In this setting, we establish sufficient conditions to guarantee that such a hypersurface must be either totally umbilical or an isoparametric hypersurface with two distinct principal curvatures one of which is simple.

On Deszcz symmetries of Wintgen ideal submanifolds

Miroslava Petrović-Torgašev, Leopold C. A. Verstraelen (2008)

Archivum Mathematicum

It was conjectured in [26] that, for all submanifolds M n of all real space forms M ˜ n + m ( c ) , the Wintgen inequality ρ H 2 - ρ + c is valid at all points of M , whereby ρ is the normalised scalar curvature of the Riemannian manifold M and H 2 , respectively ρ , are the squared mean curvature and the normalised scalar normal curvature of the submanifold M in the ambient space M ˜ , and this conjecture was shown there to be true whenever codimension m = 2 . For a given Riemannian manifold M , this inequality can be interpreted as follows:...

Currently displaying 261 – 280 of 553