Previous Page 26

Displaying 501 – 511 of 511

Showing per page

Weakly-Einstein hermitian surfaces

Vestislav Apostolov, Oleg Muškarov (1999)

Annales de l'institut Fourier

A consequence of the Riemannian Goldberg-Sachs theorem is the fact that the Kähler form of an Einstein Hermitian surface is an eigenform of the curvature operator. Referring to this property as * -Einstein condition we obtain a complete classification of the compact locally homogeneous * -Einstein Hermitian surfaces. We also provide large families of non-homogeneous * -Einstein (but non-Einstein) Hermitian metrics on 2 2 , 1 × 1 , and on the product surface X × Y of two curves X and Y whose genuses are greater...

Yang-Mills bar connections over compact Kähler manifolds

Hông Vân Lê (2010)

Archivum Mathematicum

In this note we introduce a Yang-Mills bar equation on complex vector bundles E provided with a Hermitian metric over compact Hermitian manifolds. According to the Koszul-Malgrange criterion any holomorphic structure on E can be seen as a solution to this equation. We show the existence of a non-trivial solution to this equation over compact Kähler manifolds as well as a short time existence of a related negative Yang-Mills bar gradient flow. We also show a rigidity of holomorphic connections among...

Currently displaying 501 – 511 of 511

Previous Page 26