Sasakian manifolds with vanishing contact Bochner curvature tensor and constant scalar curvature
Page 1 Next
Toshihiko Ikawa, Masahiro Kon (1977)
Colloquium Mathematicae
Masafumi Okumura (1986)
Mathematische Zeitschrift
Claude LeBrun (1991)
Journal für die reine und angewandte Mathematik
Andrew S. Dancer (1996)
Journal für die reine und angewandte Mathematik
Jongsu Kim, C., Pontecorvo, M. LeBrun (1997)
Journal für die reine und angewandte Mathematik
He Kim, Seong Ahn, Masahiro Kon (1994)
Colloquium Mathematicae
Vestislav Apostolov, Paul Gauduchon (2002)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
We provide a local classification of selfdual Einstein riemannian four-manifolds admitting a positively oriented hermitian structure and characterize those which carry a hyperhermitian, non-hyperkähler structure compatible with the negative orientation. We show that selfdual Einstein 4-manifolds obtained as quaternionic quotients of and are hermitian.
Andrzej Derdziński (1983)
Compositio Mathematica
Mitsuhiro Itoh (1984)
Compositio Mathematica
Jixiang Fu, Zhizhang Wang, Damin Wu (2013)
Journal of the European Mathematical Society
In this paper, we generalize the Gauduchon metrics on a compact complex manifold and define the functions on the space of its hermitian metrics.
Mayuko Kon (2011)
Colloquium Mathematicae
We show that there is no proper CR submanifold with semi-flat normal connection and semi-parallel second fundamental form in a complex space form with non-zero constant holomorphic sectional curvature such that the dimension of the holomorphic tangent space is greater than 2.
H. K. Kwon, S. Treil (2009)
Publicacions Matemàtiques
Johannes Huebschmann (2007)
Banach Center Publications
The Kähler quotient of a complex reductive Lie group relative to the conjugation action carries a complex algebraic stratified Kähler structure which reflects the geometry of the group. For the group SL(n,ℂ), we interpret the resulting singular Poisson-Kähler geometry of the quotient in terms of complex discriminant varieties and variants thereof.
Alan Michael Nadel (1988)
Compositio Mathematica
Takashi Oguro, Kouei Sekigawa (2008)
Colloquium Mathematicae
We consider the set of all almost Kähler structures (g,J) on a 2n-dimensional compact orientable manifold M and study a critical point of the functional with respect to the scalar curvature τ and the *-scalar curvature τ*. We show that an almost Kähler structure (J,g) is a critical point of if and only if (J,g) is a Kähler structure on M.
Ferreira, C., Machado, A. (1998)
Portugaliae Mathematica
Sato, Takuji (2000)
Balkan Journal of Geometry and its Applications (BJGA)
Irena Čomić, Jovanka Nikić (1994)
Publications de l'Institut Mathématique
Čomić, Irena, Nikić, Jovanka (1994)
Publications de l'Institut Mathématique. Nouvelle Série
Oproiu, V. (1997)
General Mathematics
Page 1 Next