On semi-invariant submanifolds of -cosymplectic manifolds.
We investigate semi-Riemannian manifolds with pseudosymmetric Weyl curvature tensor satisfying some additional condition imposed on their curvature tensor. Among other things we prove that the so-called Roter type equation holds on such manifolds. We present applications of our results to hypersurfaces in semi-Riemannian space forms, as well as to 4-dimensional warped products.
We deal with a -tensor field on the tangent bundle preserving vertical vectors and such that is a -tensor field on , where is the canonical almost tangent structure on . A connection on is constructed by . It is shown that if is a -almost complex structure on without torsion then is a unique linear symmetric connection such that and .
We give an example of a compact 6-dimensional non-Kähler symplectic manifold that satisfies the Hard Lefschetz Condition. Moreover, it is showed that is a special generalized Calabi-Yau manifold.
We investigate hypersurfaces M in spaces of constant curvature with some special minimal polynomial of the second fundamental tensor H of third degree. We present a curvature characterization of pseudosymmetry type for such hypersurfaces. We also prove that if such a hypersurface is a manifold with pseudosymmetric Weyl tensor then it must be pseudosymmetric.
We present curvature properties of pseudosymmetry type of some warped products of semi-Riemannian spaces of constant curvature.