-symmetric submanifolds
First as an application of the local structure theorem for Nambu-Poisson tensors, we characterize them in terms of differential forms. Secondly left invariant Nambu-Poisson tensors on Lie groups are considered.
We obtain the natural diagonal almost product and locally product structures on the total space of the cotangent bundle of a Riemannian manifold. Studying the compatibility and the anti-compatibility relations between the determined structures and a natural diagonal metric, we find the Riemannian almost product (locally product) and the (almost) para-Hermitian cotangent bundles of natural diagonal lift type. Finally, we prove the characterization theorem for the natural diagonal (almost) para-Kählerian...
A classification of natural liftings of foliations to the tangent bundle is given.
We determine all natural transformations T²₁T*→ T*T²₁ where . We also give a geometric characterization of the canonical isomorphism ψ₂ defined by Cantrijn et al.
We consider a vector bundle and the principal bundle of frames of . We determine all natural transformations of the connection bundle of the first order principal prolongation of principal bundle into itself.
Let be a differentiable manifold with a pseudo-Riemannian metric and a linear symmetric connection . We classify all natural (in the sense of [KMS]) 0-order vector fields and 2-vector fields on generated by and . We get that all natural vector fields are of the form where is the vertical lift of , is the horizontal lift of with respect to , and are smooth real functions defined on . All natural 2-vector fields are of the form where , are smooth real functions defined...