Page 1 Next

Displaying 1 – 20 of 220

Showing per page

Random lines and tessellations in a plane.

Luis A. Santaló (1980)

Stochastica

Our purpose is the study of the so called mixed random mosaics, formed by superposition of a given tesellation, not random, of congruent convex polygons and a homogeneous Poisson line process. We give the mean area, the mean perimeter and the mean number of sides of the polygons into which such mosaics divide the plane.

Rarita-Schwinger type operators on spheres and real projective space

Junxia Li, John Ryan, Carmen J. Vanegas (2012)

Archivum Mathematicum

In this paper we deal with Rarita-Schwinger type operators on spheres and real projective space. First we define the spherical Rarita-Schwinger type operators and construct their fundamental solutions. Then we establish that the projection operators appearing in the spherical Rarita-Schwinger type operators and the spherical Rarita-Schwinger type equations are conformally invariant under the Cayley transformation. Further, we obtain some basic integral formulas related to the spherical Rarita-Schwinger...

Rational fibrations homogeneous spaces with positive Euler characteristics and Jacobians

H. Shiga, M. Tezuka (1987)

Annales de l'institut Fourier

We show that an orientable fibration whose fiber has a homotopy type of homogeneous space G / U with rank G = rang U is totally non homologous to zero for rational coefficients. The Jacobian formed by invariant polynomial under the Weyl group of G plays a key role in the proof. We also show that it is valid for mod. p coefficients if p does not divide the order of the Weyl group of G .

Rational models of solvmanifolds with Kählerian structures.

A. Tralle (1997)

Revista Matemática de la Universidad Complutense de Madrid

We investigate the existence of symplectic non-Kählerian structures on compact solvmanifolds and prove some results which give strong necessary conditions for the existence of Kählerian structures in terms of rational homotopy theory. Our results explain known examples and generalize the Benson-Gordon theorem (Benson and Gordon (1990); our method allows us to drop the assumption of the complete solvability of G).

Reachable sets for a class of contact sub-lorentzian metrics on ℝ³, and null non-smooth geodesics

Marek Grochowski (2008)

Banach Center Publications

We compute future timelike and nonspacelike reachable sets from the origin for a class of contact sub-Lorentzian metrics on ℝ³. Then we construct non-smooth (and therefore non-Hamiltonian) null geodesics for these metrics. As a consequence we deduce that the sub-Lorentzian distance from the origin is continuous at points belonging to the boundary of the reachable set.

Currently displaying 1 – 20 of 220

Page 1 Next