Page 1 Next

Displaying 1 – 20 of 465

Showing per page

Tangent Dirac structures of higher order

P. M. Kouotchop Wamba, A. Ntyam, J. Wouafo Kamga (2011)

Archivum Mathematicum

Let L be an almost Dirac structure on a manifold M . In [2] Theodore James Courant defines the tangent lifting of L on T M and proves that: If L is integrable then the tangent lift is also integrable. In this paper, we generalize this lifting to tangent bundle of higher order.

Tangent Lie algebras to the holonomy group of a Finsler manifold

Zoltán Muzsnay, Péter T. Nagy (2011)

Communications in Mathematics

Our goal in this paper is to make an attempt to find the largest Lie algebra of vector fields on the indicatrix such that all its elements are tangent to the holonomy group of a Finsler manifold. First, we introduce the notion of the curvature algebra, generated by curvature vector fields, then we define the infinitesimal holonomy algebra by the smallest Lie algebra of vector fields on an indicatrix, containing the curvature vector fields and their horizontal covariant derivatives with respect to...

Tangent lifts of higher order of multiplicative Dirac structures

P. M. Kouotchop Wamba, A. Ntyam (2013)

Archivum Mathematicum

The tangent lifts of higher order of Dirac structures and some properties have been defined in [9] and studied in [11]. By the same way, the tangent lifts of higher order of Poisson structures have been studied in [10] and some applications are given. In particular, the authors have studied the nature of the Lie algebroids and singular foliations induced by these lifting. In this paper, we study the tangent lifts of higher order of multiplicative Poisson structures, multiplicative Dirac structures...

Tenseness of Riemannian flows

Hiraku Nozawa, José Ignacio Royo Prieto (2014)

Annales de l’institut Fourier

We show that any transversally complete Riemannian foliation of dimension one on any possibly non-compact manifold M is tense; namely, M admits a Riemannian metric such that the mean curvature form of is basic. This is a partial generalization of a result of Domínguez, which says that any Riemannian foliation on any compact manifold is tense. Our proof is based on some results of Molino and Sergiescu, and it is simpler than the original proof by Domínguez. As an application, we generalize some...

The affine approach to homogeneous geodesics in homogeneous Finsler spaces

Zdeněk Dušek (2018)

Archivum Mathematicum

In the recent paper [Yan, Z.: Existence of homogeneous geodesics on homogeneous Finsler spaces of odd dimension, Monatsh. Math. 182,1, 165–171 (2017)], it was claimed that any homogeneous Finsler space of odd dimension admits a homogeneous geodesic through any point. However, the proof contains a serious gap. The situation is a bit delicate, because the statement is correct. In the present paper, the incorrect part in this proof is indicated. Further, it is shown that homogeneous geodesics in homogeneous...

Currently displaying 1 – 20 of 465

Page 1 Next