Displaying 401 – 420 of 5550

Showing per page

Almost Hermitian surfaces with vanishing Tricerri-Vanhecke Bochner curvature tensor

Y. Euh, J. Lee, J. H. Park, K. Sekigawa, A. Yamada (2011)

Colloquium Mathematicae

We study the curvature properties of almost Hermitian surfaces with vanishing Bochner curvature tensor as defined by Tricerri and Vanhecke. Local structure theorems for such almost Hermitian surfaces are provided, and several examples related to these theorems are given.

Almost hyper-Hermitian structures in bundle spaces over manifolds with almost contact 3 -structure

Francisco Martín Cabrera (1998)

Czechoslovak Mathematical Journal

We consider almost hyper-Hermitian structures on principal fibre bundles with one-dimensional fiber over manifolds with almost contact 3-structure and study relations between the respective structures on the total space and the base. This construction suggests the definition of a new class of almost contact 3-structure, which we called trans-Sasakian, closely connected with locally conformal quaternionic Kähler manifolds. Finally we give a family of examples of hypercomplex manifolds which are not...

Almost invariant submanifolds for compact group actions

Alan Weinstein (2000)

Journal of the European Mathematical Society

We define a C 1 distance between submanifolds of a riemannian manifold M and show that, if a compact submanifold N is not moved too much under the isometric action of a compact group G , there is a G -invariant submanifold C 1 -close to N . The proof involves a procedure of averaging nearby submanifolds of riemannian manifolds in a symmetric way. The procedure combines averaging techniques of Cartan, Grove/Karcher, and de la Harpe/Karoubi with Whitney’s idea of realizing submanifolds as zeros of sections...

Almost symplectic structures and harmonic morphisms

Jean-Marie Burel (2004)

Bollettino dell'Unione Matematica Italiana

In this paper, we introduce the notion of symplectic harmonic maps between tamed manifolds and establish some properties. In the case where the manifolds are almost Hermitian manifolds, we obtain a new method to contruct harmonic maps with minimal fibres. We finally present examples of such applications between projectives spaces.

Almost-Bieberbach groups with prime order holonomy

Karel Dekimpe, Wim Malfait (1996)

Fundamenta Mathematicae

The main issue of this paper is an attempt to find a decomposition theorem for infra-nilmanifolds in the same spirit as a result of A. Vasquez for flat Riemannian manifolds. That is: we look for infra-nilmanifolds with prime order holonomy which can be obtained as a fiber space with a non-trivial nilmanifold as fiber and an infra-nilmanifold as its base.  In this perspective, we prove the following algebraic result: if E is an almost-Bieberbach group with prime order holonomy,...

Almost-Einstein manifolds with nonnegative isotropic curvature

Harish Seshadri (2010)

Annales de l’institut Fourier

Let ( M , g ) , n 4 , be a compact simply-connected Riemannian n -manifold with nonnegative isotropic curvature. Given 0 < l L , we prove that there exists ε = ε ( l , L , n ) satisfying the following: If the scalar curvature s of g satisfies l s L and the Einstein tensor satisfies Ric - s n g ε then M is diffeomorphic to a symmetric space of compact type.This is related to the result of S. Brendle on the metric rigidity of Einstein manifolds with nonnegative isotropic curvature.

Currently displaying 401 – 420 of 5550