Displaying 581 – 600 of 5550

Showing per page

Bi-Legendrian connections

Beniamino Cappelletti Montano (2005)

Annales Polonici Mathematici

We define the concept of a bi-Legendrian connection associated to a bi-Legendrian structure on an almost -manifold M 2 n + r . Among other things, we compute the torsion of this connection and prove that the curvature vanishes along the leaves of the bi-Legendrian structure. Moreover, we prove that if the bi-Legendrian connection is flat, then the bi-Legendrian structure is locally equivalent to the standard structure on 2 n + r .

BiLipschitz Decomposition of Lipschitz Maps between Carnot Groups

Sean Li (2015)

Analysis and Geometry in Metric Spaces

Let f : G → H be a Lipschitz map between two Carnot groups. We show that if B is a ball of G, then there exists a subset Z ⊂ B, whose image in H under f has small Hausdorff content, such that BZcan be decomposed into a controlled number of pieces, the restriction of f on each of which is quantitatively biLipschitz. This extends a result of [14], which proved the same result, but with the restriction that G has an appropriate discretization. We provide an example of a Carnot group not admitting such...

Bilipschitz invariance of the first transverse characteristic map

Michel Hilsum (2012)

Banach Center Publications

Given a smooth S¹-foliated bundle, A. Connes has shown the existence of an additive morphism ϕ from the K-theory group of the foliation C*-algebra to the scalar field, which factorizes, via the assembly map, the Godbillon-Vey class, which is the first secondary characteristic class, of the classifying space. We prove the invariance of this map under a bilipschitz homeomorphism, extending a previous result for maps of class C¹ by H. Natsume.

Blow-up of regular submanifolds in Heisenberg groups and applications

Valentino Magnani (2006)

Open Mathematics

We obtain a blow-up theorem for regular submanifolds in the Heisenberg group, where intrinsic dilations are used. Main consequence of this result is an explicit formula for the density of (p+1)-dimensional spherical Hausdorff measure restricted to a p-dimensional submanifold with respect to the Riemannian surface measure. We explicitly compute this formula in some simple examples and we present a lower semicontinuity result for the spherical Hausdorff measure with respect to the weak convergence...

Bochner's formula for harmonic maps from Finsler manifolds

Jintang Li (2008)

Colloquium Mathematicae

Let ϕ :(M,F)→ (N,h) be a harmonic map from a Finsler manifold to any Riemannian manifold. We establish Bochner's formula for the energy density of ϕ and maximum principle on Finsler manifolds, from which we deduce some properties of harmonic maps ϕ.

Currently displaying 581 – 600 of 5550