The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We construct pairs of compact Kähler-Einstein manifolds of complex dimension with the following properties: The canonical line bundle has Chern class , and for each positive integer the tensor powers and are isospectral for the bundle Laplacian associated with the canonical connection, while and – and hence and – are not homeomorphic. In the context of geometric quantization, we interpret these examples as magnetic fields which are quantum equivalent but not classically equivalent....
We give a review of our construction of a cohomological field theory for quasi-homogeneous singularities and the -spin theory of Jarvis-Kimura-Vaintrob. We further prove that for a singularity of type our construction of the stack of -curves is canonically isomorphic to the stack of -spin curves described by Abramovich and Jarvis. We further prove that our theory satisfies all the Jarvis-Kimura-Vaintrob axioms for an -spin virtual class. Therefore, the Faber-Shadrin-Zvonkine proof of the...
The conformal infinity of a quaternionic-Kähler metric on a -manifold with boundary is a codimension distribution on the boundary called quaternionic contact. In dimensions greater than , a quaternionic contact structure is always the conformal infinity of a quaternionic-Kähler metric. On the contrary, in dimension , we prove a criterion for quaternionic contact structures to be the conformal infinity of a quaternionic-Kähler metric. This allows us to find the quaternionic-contact structures...
Currently displaying 21 –
30 of
30