Espaces de convergence localement compacts et espaces topologiques de Kelley
Un espacio topológico es una estructura en la que cada punto posee un filtro de entornos y los entornos de un punto se relacionan con los de otros por el hecho de que haya un entorno que lo es de otros puntos vecinos, o sea por el hecho de que haya un sistema fundamental de entornos abiertos.Aquí se trata de estudiar qué subyace en una estructura en la que sólo se postula que en cada punto hay un filtro de entornos.
In this paper, by means of the essential derived operator, the classes of topological spaces whose T0 identification spaces are TDD, TF, TY or TL are characterized. This classes are related with the classes of essentially-T1-spaces (R0 spaces), essentially-TD-spaces and essentially-TUD-spaces, already known.In this way, we introduce several axioms more general than the axioms between T1 and T0 defined by Aull and Thron, all of them weaker than R0.
An element of a commutative ring with identity element is called a von Neumann regular element if there is a in such that . A point of a (Tychonoff) space is called a -point if each in the ring of continuous real-valued functions is constant on a neighborhood of . It is well-known that the ring is von Neumann regular ring iff each of its elements is a von Neumann regular element; in which case is called a -space. If all but at most one point of is a -point, then is called...