Displaying 2481 – 2500 of 8506

Showing per page

Espacios pretopológicos.

Pedro Rubió Díaz (1985)

Stochastica

Un espacio topológico es una estructura en la que cada punto posee un filtro de entornos y los entornos de un punto se relacionan con los de otros por el hecho de que haya un entorno que lo es de otros puntos vecinos, o sea por el hecho de que haya un sistema fundamental de entornos abiertos.Aquí se trata de estudiar qué subyace en una estructura en la que sólo se postula que en cada punto hay un filtro de entornos.

Espacios separablemente conexos

Alejandro Balbás De la Corte, Margarita Estévez Toranzo, Carlos Hervés Beloso, Amelia Verdejo Rodríguez (1998)

Revista de la Real Academia de Ciencias Exactas Físicas y Naturales

Espais essencialment TDD, TF, TY, TYS i TL.

Rafael Lledó, Josep Guía (1983)

Stochastica

In this paper, by means of the essential derived operator, the classes of topological spaces whose T0 identification spaces are TDD, TF, TY or TL are characterized. This classes are related with the classes of essentially-T1-spaces (R0 spaces), essentially-TD-spaces and essentially-TUD-spaces, already known.In this way, we introduce several axioms more general than the axioms between T1 and T0 defined by Aull and Thron, all of them weaker than R0.

Essential P -spaces: a generalization of door spaces

Emad Abu Osba, Melvin Henriksen (2004)

Commentationes Mathematicae Universitatis Carolinae

An element f of a commutative ring A with identity element is called a von Neumann regular element if there is a g in A such that f 2 g = f . A point p of a (Tychonoff) space X is called a P -point if each f in the ring C ( X ) of continuous real-valued functions is constant on a neighborhood of p . It is well-known that the ring C ( X ) is von Neumann regular ring iff each of its elements is a von Neumann regular element; in which case X is called a P -space. If all but at most one point of X is a P -point, then X is called...

Currently displaying 2481 – 2500 of 8506