Extensions of nonexpansive mappings in the Hilbert ball with the hyperbolic metric. II.
The main results concern commutativity of Hewitt-Nachbin realcompactification or Dieudonné completion with products of topological groups. It is shown that for every topological group that is not Dieudonné complete one can find a Dieudonné complete group such that the Dieudonné completion of is not a topological group containing as a subgroup. Using Korovin’s construction of -dense orbits, we present some examples showing that some results on topological groups are not valid for semitopological...
1991 AMS Math. Subj. Class.:Primary 54C10; Secondary 54F65We provide both a spectral and an internal characterizations of arbitrary !-favorable spaces with respect to co-zero sets. As a corollary we establish that any product of compact !-favorable spaces with respect to co-zero sets is also !-favorable with respect to co-zero sets. We also prove that every C* -embedded !-favorable with respect to co-zero sets subspace of an extremally disconnected space is extremally disconnected.
Following Malykhin, we say that a space is extraresolvable if contains a family of dense subsets such that and the intersection of every two elements of is nowhere dense, where is a nonempty open subset of is the dispersion character of . We show that, for every cardinal , there is a compact extraresolvable space of size and dispersion character . In connection with some cardinal inequalities, we prove the equivalence of the following statements: 1) , 2) is extraresolvable and...
A ballean is a set endowed with some family of balls in such a way that a ballean can be considered as an asymptotic counterpart of a uniform topological space. We introduce and study a new cardinal invariant of a ballean, the extraresolvability, which is an asymptotic reflection of the corresponding invariant of a topological space.
A class of closed, bounded, convex sets in the Banach space is shown to be a complete PCA set.