Displaying 81 – 100 of 1151

Showing per page

A classification of inverse limit spaces of tent maps with periodic critical points

Lois Kailhofer (2003)

Fundamenta Mathematicae

We work within the one-parameter family of symmetric tent maps, where the slope is the parameter. Given two such tent maps f a , f b with periodic critical points, we show that the inverse limit spaces ( a , f a ) and ( b , g b ) are not homeomorphic when a ≠ b. To obtain our result, we define topological substructures of a composant, called “wrapping points” and “gaps”, and identify properties of these substructures preserved under a homeomorphism.

A classification of ordinals up to Borel isomorphism

Su Gao, Steve Jackson, Vincent Kieftenbeld (2008)

Fundamenta Mathematicae

We consider the Borel structures on ordinals generated by their order topologies and provide a complete classification of all ordinals up to Borel isomorphism in ZFC. We also consider the same classification problem in the context of AD and give a partial answer for ordinals ≤ω₂.

A coding of separable Banach spaces. Analytic and coanalytic families of Banach spaces

Benoit Bossard (2002)

Fundamenta Mathematicae

When the set of closed subspaces of C(Δ), where Δ is the Cantor set, is equipped with the standard Effros-Borel structure, the graph of the basic relations between Banach spaces (isomorphism, being isomorphic to a subspace, quotient, direct sum,...) is analytic non-Borel. Many natural families of Banach spaces (such as reflexive spaces, spaces not containing ℓ₁(ω),...) are coanalytic non-Borel. Some natural ranks (rank of embedding, Szlenk indices) are shown to be coanalytic ranks. Applications...

A cohomological index of Fuller type for parameterized set-valued maps in normed spaces

Robert Skiba (2014)

Open Mathematics

We construct a cohomological index of the Fuller type for set-valued flows in normed linear spaces satisfying the properties of existence, excision, additivity, homotopy and topological invariance. In particular, the constructed index detects periodic orbits and stationary points of set-valued dynamical systems, i.e., those generated by differential inclusions. The basic methods to calculate the index are also presented.

Currently displaying 81 – 100 of 1151