Refinements of Lebesgue covers
We say that a cardinal function reflects an infinite cardinal , if given a topological space with , there exists with . We investigate some problems, discussed by Hodel and Vaughan in Reflection theorems for cardinal functions, Topology Appl. 100 (2000), 47–66, and Juhász in Cardinal functions and reflection, Topology Atlas Preprint no. 445, 2000, related to the reflection for the cardinal functions character and pseudocharacter. Among other results, we present some new equivalences with...
We deal with a conjectured dichotomy for compact Hausdorff spaces: each such space contains a non-trivial converging ω-sequence or a non-trivial converging ω₁-sequence. We establish that this dichotomy holds in a variety of models; these include the Cohen models, the random real models and any model obtained from a model of CH by an iteration of property K posets. In fact in these models every compact Hausdorff space without non-trivial converging ω₁-sequences is first-countable and, in addition,...
Given a topological property P, we study when it reflects in small continuous images, i.e., when for some infinite cardinal κ, a space X has P if and only if all its continuous images of weight less or equal to κ have P. We say that a cardinal invariant η reflects in continuous images of weight κ + if η(X) ≤ κ provided that η(Y) ≤ κ whenever Y is a continuous image of X of weight less or equal to κ +. We establish that, for any infinite cardinal κ, the spread, character, pseudocharacter and Souslin...
Let S(X) denote the set of all closed subsets of a topological space X, and C(X) the set of all continuous mappings f:X → X. A family 𝓐 ⊆ S(X) is called reflexive if there exists ℱ ⊆ C(X) such that 𝓐 = {A ∈ S(X): f(A) ⊆ A for every f ∈ ℱ}. We investigate conditions ensuring that a family of closed subsets is reflexive.
We show that for many natural topological groups G (including the group ℤ of integers) there exist compact metric G-spaces (cascades for G = ℤ) which are reflexively representable but not Hilbert representable. This answers a question of T. Downarowicz. The proof is based on a classical example of W. Rudin and its generalizations. A~crucial step in the proof is our recent result which states that every weakly almost periodic function on a compact G-flow X comes from a G-representation of X on reflexive...
∗ This work was partially supported by the National Foundation for Scientific Researches at the Bulgarian Ministry of Education and Science under contract no. MM-427/94.In this paper the notion of SR-proximity is introduced and in virtue of it some new proximity-type descriptions of the ordered sets of all (up to equivalence) regular, resp. completely regular, resp. locally compact extensions of a topological space are obtained. New proofs of the Smirnov Compactification Theorem [31] and of the...
2000 Mathematics Subject Classification: Primary 46E15, 54C55; Secondary 28B20.For weakly compact subsets of Hilbert spaces K, we study the existence of totally disconnected spaces L, such that C(K) is isomorphic to C(L). We prove that the space C(BH ) admits a Pełczyński decomposition and we provide a starshaped weakly compact K, subset of BH with non-empty interior in the norm topology, and such that C(K) ~= C(L) with L totally disconnected.Research partially supported by EPEAEK program “Pythagoras”....