A classification of H-closed extensions
We work within the one-parameter family of symmetric tent maps, where the slope is the parameter. Given two such tent maps , with periodic critical points, we show that the inverse limit spaces and are not homeomorphic when a ≠ b. To obtain our result, we define topological substructures of a composant, called “wrapping points” and “gaps”, and identify properties of these substructures preserved under a homeomorphism.
We consider the Borel structures on ordinals generated by their order topologies and provide a complete classification of all ordinals up to Borel isomorphism in ZFC. We also consider the same classification problem in the context of AD and give a partial answer for ordinals ≤ω₂.
When the set of closed subspaces of C(Δ), where Δ is the Cantor set, is equipped with the standard Effros-Borel structure, the graph of the basic relations between Banach spaces (isomorphism, being isomorphic to a subspace, quotient, direct sum,...) is analytic non-Borel. Many natural families of Banach spaces (such as reflexive spaces, spaces not containing ℓ₁(ω),...) are coanalytic non-Borel. Some natural ranks (rank of embedding, Szlenk indices) are shown to be coanalytic ranks. Applications...
We construct a cohomological index of the Fuller type for set-valued flows in normed linear spaces satisfying the properties of existence, excision, additivity, homotopy and topological invariance. In particular, the constructed index detects periodic orbits and stationary points of set-valued dynamical systems, i.e., those generated by differential inclusions. The basic methods to calculate the index are also presented.
We present a short and self-contained proof of the extension property for partial isometries of the class of all finite metric spaces.
A common fixed theorem is proved for two pairs of compatible mappings on a normed vector space.
In the setting of a b-metric space (see [Czerwik, S.: Contraction mappings in b-metric spaces Acta Math. Inform. Univ. Ostraviensis 1 (1993), 5–11.] and [Czerwik, S.: Nonlinear set-valued contraction mappings in b-metric spaces Atti Sem. Mat. Fis. Univ. Modena 46, 2 (1998), 263–276.]), we establish two general common fixed point theorems for two mappings satisfying the (E.A) condition (see [Aamri, M., El Moutawakil, D.: Some new common fixed point theorems under strict contractive conditions Math....