Uniform homeomorphisms between Banach spaces
Thirteen properties of uniform spaces are shown to be equivalent. The most important properties seem to be those related to modules of uniformly continuous mappings into normed spaces, and to partitions of unity.
In this article, we formalize in Mizar [1] the notion of uniform space introduced by André Weil using the concepts of entourages [2]. We present some results between uniform space and pseudo metric space. We introduce the concepts of left-uniformity and right-uniformity of a topological group. Next, we define the concept of the partition topology. Following the Vlach’s works [11, 10], we define the semi-uniform space induced by a tolerance and the uniform space induced by an equivalence relation....
Some stability properties of motions in pseudo-dynamical systems and semi-systems are studied.
In this paper, we use filters of an EQ-algebra E to induce a uniform structure (E, 𝓚), and then the part 𝓚 induce a uniform topology 𝒯 in E. We prove that the pair (E, 𝒯) is a topological EQ-algebra, and some properties of (E, 𝒯) are investigated. In particular, we show that (E, 𝒯) is a first-countable, zero-dimensional, disconnected and completely regular space. Finally, by using convergence of nets, the convergence of topological EQ-algebras is obtained.