Displaying 101 – 120 of 307

Showing per page

Funzioni ( p , q ) -convesse

Ennio De Giorgi, Antonio Marino, Mario Tosques (1982)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We study a class of functions which differ essentially from those which are the sum of a convex function and a regular one and which have interesting properties related to Γ -convergence and to problems with non-convex constraints. In particular some results are given for the associated evolution equations.

Geometry of compactifications of locally symmetric spaces

Lizhen Ji, Robert Macpherson (2002)

Annales de l’institut Fourier

For a locally symmetric space M , we define a compactification M M ( ) which we call the “geodesic compactification”. It is constructed by adding limit points in M ( ) to certain geodesics in M . The geodesic compactification arises in other contexts. Two general constructions of Gromov for an ideal boundary of a Riemannian manifold give M ( ) for locally symmetric spaces. Moreover, M ( ) has a natural group theoretic construction using the Tits building. The geodesic compactification plays two fundamental roles in...

HC-convergence theory of L -nets and L -ideals and some of its applications

A. A. Nouh (2003)

Mathematica Bohemica

In this paper we introduce and study the concepts of error -closed set and error -limit ( error -cluster) points of L -nets and L -ideals using the notion of almost N -compact remoted neighbourhoods in L -topological spaces. Then we introduce and study the concept of error -continuous mappings. Several characterizations based on error -closed sets and the error -convergence theory of L -nets and L -ideals are presented for error -continuous mappings.

Hereditarily Hurewicz spaces and Arhangel'skii sheaf amalgamations

Boaz Tsaban, Lubomyr Zdomsky (2012)

Journal of the European Mathematical Society

A classical theorem of Hurewicz characterizes spaces with the Hurewicz covering property as those having bounded continuous images in the Baire space. We give a similar characterization for spaces X which have the Hurewicz property hereditarily. We proceed to consider the class of Arhangel’skii α 1 spaces, for which every sheaf at a point can be amalgamated in a natural way. Let C p ( X ) denote the space of continuous real-valued functions on X with the topology of pointwise convergence. Our main result...

I and I * -convergence in topological spaces

Benoy Kumar Lahiri, Pratulananda Das (2005)

Mathematica Bohemica

We extend the idea of I -convergence and I * -convergence of sequences to a topological space and derive several basic properties of these concepts in the topological space.

Ideal convergence and divergence of nets in ( ) -groups

Antonio Boccuto, Xenofon Dimitriou, Nikolaos Papanastassiou (2012)

Czechoslovak Mathematical Journal

In this paper we introduce the - and * -convergence and divergence of nets in ( ) -groups. We prove some theorems relating different types of convergence/divergence for nets in ( ) -group setting, in relation with ideals. We consider both order and ( D ) -convergence. By using basic properties of order sequences, some fundamental properties, Cauchy-type characterizations and comparison results are derived. We prove that * -convergence/divergence implies -convergence/divergence for every ideal, admissible for...

Ideal version of Ramsey's theorem

Rafał Filipów, Nikodem Mrożek, Ireneusz Recław, Piotr Szuca (2011)

Czechoslovak Mathematical Journal

We consider various forms of Ramsey's theorem, the monotone subsequence theorem and the Bolzano-Weierstrass theorem which are connected with ideals of subsets of natural numbers. We characterize ideals with properties considered. We show that, in a sense, Ramsey's theorem, the monotone subsequence theorem and the Bolzano-Weierstrass theorem characterize the same class of ideals. We use our results to show some versions of density Ramsey's theorem (these are similar to generalizations shown in [P....

Kuratowski convergence on compacta and Hausdorff metric convergence on compacta

Primo Brandi, Rita Ceppitelli, Ľubica Holá (1999)

Commentationes Mathematicae Universitatis Carolinae

This paper completes and improves results of [10]. Let ( X , d X ) , ( Y , d Y ) be two metric spaces and G be the space of all Y -valued continuous functions whose domain is a closed subset of X . If X is a locally compact metric space, then the Kuratowski convergence τ K and the Kuratowski convergence on compacta τ K c coincide on G . Thus if X and Y are boundedly compact metric spaces we have the equivalence of the convergence in the Attouch-Wets topology τ A W (generated by the box metric of d X and d Y ) and τ K c convergence on G ,...

L -groups versus k -groups

Roman Frič (1993)

Mathematica Bohemica

We investigate free groups over sequential spaces. In particular, we show that the free k -group and the free sequential group over a sequential space with unique limits coincide and, barred the trivial case, their sequential order is ω 1 .

Currently displaying 101 – 120 of 307