Perfect maps in compact (countably compact) spaces.
In this paper we consider rational subspaces of the plane. A rational space is a space which has a basis of open sets with countable boundaries. In the special case where the boundaries are finite, the space is called rim-finite.
Let , be metric spaces and an injective mapping. We put ; , , and (the distortion of the mapping ). Some Ramsey-type questions for mappings of finite metric spaces with bounded distortion are studied; e.g., the following theorem is proved: Let be a finite metric space, and let , be given numbers. Then there exists a finite metric space , such that for every mapping ( arbitrary metric space) with one can find a mapping , such that both the mappings and have distortion at...
Certain equivalences of Mrowka's separating condition enable us to characterize when parametric maps are open, closed or quotient.
Arhangel’skii [Sci. Math. Jpn. 55 (2002), 153–201] defined notions of relative paracompactness in terms of locally finite open partial refinement and asked if one can generalize the notions above to the well known Michael’s criteria of paracompactness in [17] and [18]. In this paper, we consider some versions of relative paracompactness defined by locally finite (not necessarily open) partial refinement or locally finite closed partial refinement, and also consider closure-preserving cases, such...
We characterize spaces with --linked bases as specially embedded subspaces of separable spaces, and derive some corollaries, such as the -productivity of the property of having a -linked base.
An embedding X ⊂ G of a topological space X into a topological group G is called functorial if every homeomorphism of X extends to a continuous group homomorphism of G. It is shown that the interval [0, 1] admits no functorial embedding into a finite-dimensional or metrizable topological group.
Pointfree formulas for three kinds of separating points for closed sets by maps are given. These formulas allow controlling the amount of factors of the target product space so that it does not exceed the weight of the embeddable space. In literature, the question of how many factors of the target product are needed for the embedding has only been considered for specific spaces. Our approach is algebraic in character and can thus be viewed as a contribution to Kuratowski's topological calculus.
We prove a Dichotomy Theorem: for each Hausdorff compactification of an arbitrary topological group , the remainder is either pseudocompact or Lindelöf. It follows that if a remainder of a topological group is paracompact or Dieudonne complete, then the remainder is Lindelöf, and the group is a paracompact -space. This answers a question in A.V. Arhangel’skii, Some connections between properties of topological groups and of their remainders, Moscow Univ. Math. Bull. 54:3 (1999), 1–6. It is...
We define a dendrite which is universal in the class of all completely regular dendrites with order of points not greater than n. In particular, the dendrite is universal in the class of all completely regular dendrites. The construction starts with the standard universal dendrite of order n described by J. J. Charatonik.