Fixed point theorems in generating spaces of quasi-norm family and applications.
Let be a fuzzy metric space endowed with a graph such that the set of vertices of coincides with . Then we define a -fuzzy contraction on and prove some results concerning the existence and uniqueness of fixed point for such mappings. As a consequence of the main results we derive some extensions of known results from metric into fuzzy metric spaces. Some examples are given which illustrate the results.
We prove a fixed point theorem for cyclic orbital generalized contractions on complete metric spaces from which we deduce, among other results, generalized cyclic versions of the celebrated Boyd and Wong fixed point theorem, and Matkowski fixed point theorem. This is done by adapting to the cyclic framework a condition of Meir-Keeler type discussed in [Jachymski J., Equivalent conditions and the Meir-Keeler type theorems, J. Math. Anal. Appl., 1995, 194(1), 293–303]. Our results generalize some...
For a class of multivalued contractions with nonclosed, nonconvex values, the set of all fixed points is proved to be nonempty and arcwise connected. Two applications are then developed. In particular, one of them is concerned with some properties of the set of all classical trajectories corresponding to continuous controls for a given nonlinear control system.
In his paper "Continuous mappings on continua" [5], T. Maćkowiak collected results concerning mappings on metric continua. These results are theorems, counterexamples, and unsolved problems and are listed in a series of tables at the ends of chapters. It is the purpose of the present paper to provide solutions (three proofs and one example) to four of those problems.
The aim of this paper is to construct a fractal with the help of a finite family of F− contraction mappings, a class of mappings more general than contraction mappings, defined on a complete metric space. Consequently, we obtain a variety of results for iterated function systems satisfying a different set of contractive conditions. Some examples are presented to support the results proved herein. Our results unify, generalize and extend various results in the existing literature.
Let K be a compact Hausdorff space, the space of continuous functions on K endowed with the pointwise convergence topology, D ⊂ K a dense subset and the topology in C(K) of pointwise convergence on D. It is proved that when is Lindelöf the -compact subsets of C(K) are fragmented by the supremum norm of C(K). As a consequence we obtain some Namioka type results and apply them to prove that if K is separable and is Lindelöf, then K is metrizable if, and only if, there is a countable and dense...
We study free topological groups defined over uniform spaces in some subclasses of the class of non-archimedean groups. Our descriptions of the corresponding topologies show that for metrizable uniformities the corresponding free balanced, free abelian and free Boolean groups are also metrizable. Graev type ultra-metrics determine the corresponding free topologies. Such results are in a striking contrast with free balanced and free abelian topological groups cases (in standard varieties). Another...