-movable and -calm compacta and their images
Page 1 Next
Zvonko Čerin (1982)
Compositio Mathematica
Friedrich W. Bauer (1977)
Journal für die reine und angewandte Mathematik
J. Aarts (1971)
Fundamenta Mathematicae
David Addis, John Gresham (1978)
Fundamenta Mathematicae
John Gresham (1980)
Fundamenta Mathematicae
James Austin French (1974)
Compositio Mathematica
Andrzej Komisarski (2006)
Fundamenta Mathematicae
Let X be a compact Hausdorff topological space. We show that multiplication in the algebra C(X) is open iff dim X < 1. On the other hand, the existence of non-empty open sets U,V ⊂ C(X) satisfying Int(U· V) = ∅ is equivalent to dim X > 1. The preimage of every set of the first category in C(X) under the multiplication map is of the first category in C(X) × C(X) iff dim X ≤ 1.
Jan Dijkstra (1996)
Fundamenta Mathematicae
We construct a hereditary shape equivalence that raises transfinite inductive dimension from ω to ω+1. This shows that ind and Ind do not admit a geometric characterisation in the spirit of Alexandroff's Essential Mapping Theorem, answering a question asked by R. Pol.
Michael Levin (2013)
Fundamenta Mathematicae
We show that the Cartesian product of three hereditarily infinite-dimensional compact metric spaces is never hereditarily infinite-dimensional. It is quite surprising that the proof of this fact (and this is the only proof known to the author) essentially relies on algebraic topology.
M. Charalambous (1998)
Fundamenta Mathematicae
We prove a factorization theorem for transfinite kernel dimension in the class of metrizable spaces. Our result in conjunction with Pasynkov's technique implies the existence of a universal element in the class of metrizable spaces of given weight and transfinite kernel dimension, a result known from the work of Luxemburg and Olszewski.
M. Brodmann (1986)
Journal für die reine und angewandte Mathematik
Shen, Lu-ming, Liu, Yue-hua, Zhou, Yu-yuan (2007)
Acta Mathematica Academiae Paedagogicae Nyí regyháziensis. New Series [electronic only]
Elżbieta Pol, Roman Pol (1979)
Fundamenta Mathematicae
Elżbieta Pol, Roman Pol (1977)
Fundamenta Mathematicae
Guy David, Marie Snipes (2013)
Analysis and Geometry in Metric Spaces
We give a non-probabilistic proof of a theorem of Naor and Neiman that asserts that if (E, d) is a doubling metric space, there is an integer N > 0, depending only on the metric doubling constant, such that for each exponent α ∈ (1/2; 1), one can find a bilipschitz mapping F = (E; dα ) ⃗ ℝ RN.
Reiterman, J., Rödl, V. (1977)
Abstracta. 5th Winter School on Abstract Analysis
T. Przymusiński (1974)
Fundamenta Mathematicae
Hisao Kato (1992)
Czechoslovak Mathematical Journal
W. Kulpa (1972)
Colloquium Mathematicae
A. Pears (1971)
Fundamenta Mathematicae
Page 1 Next