Displaying 281 – 300 of 1234

Showing per page

Continua which admit no mean

K. Kawamura, E. Tymchatyn (1996)

Colloquium Mathematicae

A symmetric, idempotent, continuous binary operation on a space is called a mean. In this paper, we provide a criterion for the non-existence of mean on a certain class of continua which includes tree-like continua. This generalizes a result of Bell and Watson. We also prove that any hereditarily indecomposable circle-like continuum admits no mean.

Continua with unique symmetric product

José G. Anaya, Enrique Castañeda-Alvarado, Alejandro Illanes (2013)

Commentationes Mathematicae Universitatis Carolinae

Let X be a metric continuum. Let F n ( X ) denote the hyperspace of nonempty subsets of X with at most n elements. We say that the continuum X has unique hyperspace F n ( X ) provided that the following implication holds: if Y is a continuum and F n ( X ) is homeomorphic to F n ( Y ) , then X is homeomorphic to Y . In this paper we prove the following results: (1) if X is an indecomposable continuum such that each nondegenerate proper subcontinuum of X is an arc, then X has unique hyperspace F 2 ( X ) , and (2) let X be an arcwise connected...

Continuous decompositions of Peano plane continua into pseudo-arcs

Janusz Prajs (1998)

Fundamenta Mathematicae

Locally planar Peano continua admitting continuous decomposition into pseudo-arcs (into acyclic curves) are characterized as those with no local separating point. This extends the well-known result of Lewis and Walsh on a continuous decomposition of the plane into pseudo-arcs.

Continuous pseudo-hairy spaces and continuous pseudo-fans

Janusz R. Prajs (2002)

Fundamenta Mathematicae

A compact metric space X̃ is said to be a continuous pseudo-hairy space over a compact space X ⊂ X̃ provided there exists an open, monotone retraction r : X ̃ o n t o X such that all fibers r - 1 ( x ) are pseudo-arcs and any continuum in X̃ joining two different fibers of r intersects X. A continuum Y X is called a continuous pseudo-fan of a compactum X if there are a point c Y X and a family ℱ of pseudo-arcs such that = Y X , any subcontinuum of Y X intersecting two different elements of ℱ contains c, and ℱ is homeomorphic to X (with...

Continuous selections, G δ -subsets of Banach spaces and usco mappings

Valentin G. Gutev (1994)

Commentationes Mathematicae Universitatis Carolinae

Every l.s.cṁapping from a paracompact space into the non-empty, closed, convex subsets of a (not necessarily convex) G δ -subset of a Banach space admits a single-valued continuous selection provided every such mapping admits a convex-valued usco selection. This leads us to some new partial solutions of a problem raised by E. Michael.

Continuous selections on spaces of continuous functions

Angel Tamariz-Mascarúa (2006)

Commentationes Mathematicae Universitatis Carolinae

For a space Z , we denote by ( Z ) , 𝒦 ( Z ) and 2 ( Z ) the hyperspaces of non-empty closed, compact, and subsets of cardinality 2 of Z , respectively, with their Vietoris topology. For spaces X and E , C p ( X , E ) is the space of continuous functions from X to E with its pointwise convergence topology. We analyze in this article when ( Z ) , 𝒦 ( Z ) and 2 ( Z ) have continuous selections for a space Z of the form C p ( X , E ) , where X is zero-dimensional and E is a strongly zero-dimensional metrizable space. We prove that C p ( X , E ) is weakly orderable if and...

Continuum many tent map inverse limits with homeomorphic postcritical ω-limit sets

Chris Good, Brian E. Raines (2006)

Fundamenta Mathematicae

We demonstrate that the set of topologically distinct inverse limit spaces of tent maps with a Cantor set for its postcritical ω-limit set has cardinality of the continuum. The set of folding points (i.e. points at which the space is not homeomorphic to the product of a zero-dimensional set and an arc) of each of these spaces is also a Cantor set.

Currently displaying 281 – 300 of 1234