Measure preserving analytic diffeomorphisms of countable dense sets in and
We prove that an ultrametric space can be bi-Lipschitz embedded in if its metric dimension in Assouad’s sense is smaller than n. We also characterize ultrametric spaces up to bi-Lipschitz homeomorphism as dense subspaces of ultrametric inverse limits of certain inverse sequences of discrete spaces.
We consider the class of compact spaces which are modifications of the well known double arrow space. The space is obtained from a closed subset K of the unit interval [0,1] by “splitting” points from a subset A ⊂ K. The class of all such spaces coincides with the class of separable linearly ordered compact spaces. We prove some results on the topological classification of spaces and on the isomorphic classification of the Banach spaces .
Let c be the Banach space consisting of all convergent sequences of reals with the sup-norm, the set of all bounded continuous functions f: A → c, and the set of all functions f: X → c which are continuous at each point of A ⊂ X. We show that a Tikhonov subspace A of a topological space X is strong Choquet in X if there exists a monotone extender . This shows that the monotone extension property for bounded c-valued functions can fail in GO-spaces, which provides a negative answer to a question...
Sufficient as well as necessary conditions are studied for a dendrite or a dendroid to be homogeneous with respect to monotone mappings. The obtained results extend ones due to H. Kato and the first named author. A number of open problems are asked.