Extending Continuous Functions on Zero-Dimensional Spaces.
For metrizable continua, there exists the well-known notion of a Whitney map. If is a nonempty, compact, and metric space, then any Whitney map for any closed subset of can be extended to a Whitney map for [3, 16.10 Theorem]. The main purpose of this paper is to prove some generalizations of this theorem.
We present an approach to cohomological dimension theory based on infinite symmetric products and on the general theory of dimension called the extension dimension. The notion of the extension dimension ext-dim(X) was introduced by A. N. Dranishnikov [9] in the context of compact spaces and CW complexes. This paper investigates extension types of infinite symmetric products SP(L). One of the main ideas of the paper is to treat ext-dim(X) ≤ SP(L) as the fundamental concept of cohomological dimension...
1991 AMS Math. Subj. Class.:Primary 54C10; Secondary 54F65We provide both a spectral and an internal characterizations of arbitrary !-favorable spaces with respect to co-zero sets. As a corollary we establish that any product of compact !-favorable spaces with respect to co-zero sets is also !-favorable with respect to co-zero sets. We also prove that every C* -embedded !-favorable with respect to co-zero sets subspace of an extremally disconnected space is extremally disconnected.
Following Malykhin, we say that a space is extraresolvable if contains a family of dense subsets such that and the intersection of every two elements of is nowhere dense, where is a nonempty open subset of is the dispersion character of . We show that, for every cardinal , there is a compact extraresolvable space of size and dispersion character . In connection with some cardinal inequalities, we prove the equivalence of the following statements: 1) , 2) is extraresolvable and...
It has been an open question since 1997 whether, and under what assumptions on the underlying space, extreme topological measures are dense in the set of all topological measures on the space. The present paper answers this question. The main result implies that extreme topological measures are dense on a variety of spaces, including spheres, balls and projective planes.
Let denote a true dimension function, i.e., a dimension function such that for all . For a space , we denote the hyperspace consisting of all compact connected, non-empty subsets by . If is a countable infinite product of non-degenerate Peano continua, then the sequence is -absorbing in . As a consequence, there is a homeomorphism such that for all , , where denotes the pseudo boundary of the Hilbert cube . It follows that if is a countable infinite product of non-degenerate...
Right factorizations for a class of l.s.cṁappings with separable metrizable range are constructed. Besides in the selection and dimension theories, these l.s.cḟactorizations are also successful in solving the problem of factorizing a class of u.s.cṁappings.
An embedding from a Cartesian product of two spaces into the Cartesian product of two spaces is said to be factorwise rigid provided that it is the product of embeddings on the individual factors composed with a permutation of the coordinates. We prove that each embedding of a product of two pseudo-arcs into itself is factorwise rigid. As a consequence, if X and Y are metric continua with the property that each of their nondegenerate proper subcontinua is homeomorphic to the pseudo-arc, then X ×...
A continuum is a compact connected metric space. For a continuum X, let C(X) denote the hyperspace of subcontinua of X. In this paper we construct two nonhomeomorphic fans (dendroids with only one ramification point) X and Y such that C(X) and C(Y) are homeomorphic. This answers a question by Sam B. Nadler, Jr.