On the dimension modulo classes of topological spaces and free topological groups.
We prove that for every n ∈ ℕ the space M(K(x 1, …, x n) of ℝ-places of the field K(x 1, …, x n) of rational functions of n variables with coefficients in a totally Archimedean field K has the topological covering dimension dimM(K(x 1, …, x n)) ≤ n. For n = 2 the space M(K(x 1, x 2)) has covering and integral dimensions dimM(K(x 1, x 2)) = dimℤ M(K(x 1, x 2)) = 2 and the cohomological dimension dimG M(K(x 1, x 2)) = 1 for any Abelian 2-divisible coefficient group G.
A metric space (X,ϱ) satisfies the disjoint (0,n)-cells property provided for each point x ∈ X, any map f of the n-cell into X and for each ε > 0 there exist a point y ∈ X and a map such that ϱ(x,y) < ε, and . It is proved that each homogeneous locally compact ANR of dimension >2 has the disjoint (0,2)-cells property. If dimX = n > 0, X has the disjoint (0,n-1)-cells property and X is a locally compact -space then local homologies satisfy for k < n and Hn(X,X-x) ≠ 0.
It is shown that every Polish space X with admits a compact subspace Y such that where and denote the topological and Hausdorff dimensions, respectively.
We calculate the singular homology and Čech cohomology groups of the Harmonic Archipelago. As a corollary, we prove that this space is not homotopy equivalent to the Griffiths space. This is interesting in view of Eda’s proof that the first singular homology groups of these spaces are isomorphic.
Let be a continuum and a positive integer. Let be the hyperspace of all nonempty closed subsets of with at most components, endowed with the Hausdorff metric. For compact subset of , define the hyperspace . In this paper, we consider the hyperspace , which can be a tool to study the space . We study this hyperspace in the class of finite graphs and in general, we prove some properties such as: aposyndesis, local connectedness, arcwise disconnectedness, and contractibility.