A de Rham theorem in the context of noncommutative geometry.
Mejías, Fernando (2005)
Boletín de la Asociación Matemática Venezolana
W. Barth, A. de Van de Ven (1974)
Inventiones mathematicae
J.B. Carrell, R.M. Goresky (1983)
Inventiones mathematicae
Douglas C. Ravenel (1972)
Commentarii mathematici Helvetici
M. Furi, M. Martelli (1974)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
H. DeKleine, Jack Girolo (1978)
Fundamenta Mathematicae
Michael Levin (2013)
Fundamenta Mathematicae
We show that the Cartesian product of three hereditarily infinite-dimensional compact metric spaces is never hereditarily infinite-dimensional. It is quite surprising that the proof of this fact (and this is the only proof known to the author) essentially relies on algebraic topology.
Jan Chrastina (1983)
Archivum Mathematicum
Jan Chrastina (1983)
Archivum Mathematicum
John W. Rutter (1973)
Mathematische Zeitschrift
Barr, Michael (2002)
Georgian Mathematical Journal
Daniele Struppa, Cristina Turrini (1984/1985)
Mathematische Zeitschrift
Igor Nikolaev (2015)
Czechoslovak Mathematical Journal
The paper studies applications of -algebras in geometric topology. Namely, a covariant functor from the category of mapping tori to a category of -algebras is constructed; the functor takes continuous maps between such manifolds to stable homomorphisms between the corresponding -algebras. We use this functor to develop an obstruction theory for the torus bundles of dimension , and . In conclusion, we consider two numerical examples illustrating our main results.
Helmut Reckziegel (1992)
Manuscripta mathematica
Steven A. Mitchell (1986)
Mathematische Zeitschrift
Helga Schirmer (1990)
Fundamenta Mathematicae
Nancy Rallis (1983)
Manuscripta mathematica
Mário J. Edmundo (2007)
Annales de l’institut Fourier
Here we prove an o-minimal fixed point theorem for definable continuous maps on definably compact definable sets, generalizing Brumfiel’s version of the Hopf fixed point theorem for semi-algebraic maps.
Warren White (1973)
Fundamenta Mathematicae
Luis Lechuga, Aniceto Murillo (2002)
Annales de l’institut Fourier
In this paper we find a formula for the rational LS-category of certain elliptic spaces which generalizes or complements previous work of the subject. This formula is given in terms of the minimal model of the space.