Equivariant Alexander-Spanier cohomology for actions of compact Lie groups.
We introduce equivariant formal deformation theory of associative algebra morphisms. We also present an equivariant deformation cohomology of associative algebra morphisms and using this we study the equivariant formal deformation theory of associative algebra morphisms. We discuss some examples of equivariant deformations and use the Maurer-Cartan equation to characterize equivariant deformations.
We construct a Hecke structure on equivariant Bredon cohomology with local coefficients and then describe some of its properties. We compare this structure with the Mackey structure defined by T. tom Dieck and with the Illman transfer.
Let X be a space with free loop space ΛX and mod two cohomology R = H*X. We construct functors and ℓ(R) together with algebra homomorphisms and . When X is 1-connected and R is a symmetric algebra we show that these are isomorphisms.
We describe hypergeometric solutions of the quantum differential equation of the cotangent bundle of a partial flag variety. These hypergeometric solutions manifest the Landau-Ginzburg mirror symmetry for the cotangent bundle of a partial flag variety.
Using the Berline-Vergne integration formula for equivariant cohomology for torus actions, we prove that integrals over Grassmannians (classical, Lagrangian or orthogonal ones) of characteristic classes of the tautological bundle can be expressed as iterated residues at infinity of some holomorphic functions of several variables. The results obtained for these cases can be expressed as special cases of one formula involving the Weyl group action on the characters of the natural representation of...