Loading [MathJax]/extensions/MathZoom.js
We are interested in the problem of describing compact solvmanifolds admitting symplectic and Kählerian structures. This was first considered in [3, 4] and [7]. These papers used the Hattori theorem concerning the cohomology of solvmanifolds hence the results obtained covered only the completely solvable case}. Our results do not use the assumption of complete solvability. We apply our methods to construct a new example of a compact symplectic non-Kählerian solvmanifold.
Let be a finite group. It was observed by L.S. Scull that the original definition of
the equivariant minimality in the -connected case is incorrect because of an error
concerning algebraic properties. In the -disconnected case the orbit category was originally replaced by the category with one object for each
component of each fixed point simplicial subsets of a -simplicial set , for
all subgroups . We redefine the equivariant minimality and redevelop some
results on the rational homotopy...
Let R be a subring ring of Q. We reserve the symbol p for the least prime which is not a unit in R; if R ⊒Q, then p=∞. Denote by DGL nnp, n≥1, the category of (n-1)-connected np-dimensional differential graded free Lie algebras over R. In [1] D. Anick has shown that there is a reasonable concept of homotopy in the category DGL nnp. In this work we intend to answer the following two questions: Given an object (L(V), ϖ) in DGL n3n+2 and denote by S(L(V), ϖ) the class of objects homotopy equivalent...
The problem of the characterization of graded Lie algebras which admit a realization as the homotopy Lie algebra of a space of type is discussed. The central results are formulated in terms of varieties of structure constants, several criterions for concrete algebras are also deduced.
Let LX be the space of free loops on a simply connected manifold X. When the real cohomology of X is a tensor product of algebras generated by a single element, we determine the algebra structure of the real cohomology of LX by using the cyclic bar complex of the de Rham complex Ω(X) of X. In consequence, the algebra generators of the real cohomology of LX can be represented by differential forms on LX through Chen’s iterated integral map. Let be the circle group. The -equivariant cohomology...
Currently displaying 1 –
14 of
14