The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We develop a machinery of Chen iterated integrals for higher Hochschild complexes. These are complexes whose differentials are modeled on an arbitrary simplicial set much in the same way the ordinary Hochschild differential is modeled on the circle. We use these to give algebraic models for general mapping spaces and define and study the surface product operation on the homology of mapping spaces of surfaces of all genera into a manifold. This is an analogue of the loop product in string topology....
We will give a condition characterizing spaces X with SNT(X) = {[X]} which generalizes the corresponding result of McGibbon and Moller [8] for rational H-spaces.
In this paper we find a formula for the rational LS-category of certain elliptic spaces
which generalizes or complements previous work of the subject. This formula is given in
terms of the minimal model of the space.
Sullivan associated a uniquely determined to any simply connected simplicial complex . This algebra (called minimal model) contains the total (and exactly) rational homotopy information of the space . In case is the total space of a principal -bundle, ( is a compact connected Lie-group) we associate a -equivariant model , which is a collection of “-homotopic” ’s with -action. will, in general, be different from the Sullivan’s minimal model of the space . contains the total rational...
We show that the property of having only vanishing triple Massey products in equivariant cohomology is inherited by the set of fixed points of hamiltonian circle actions on closed symplectic manifolds. This result can be considered in a more general context of characterizing homotopic properties of Lie group actions. In particular it can be viewed as a partial answer to a question posed by Allday and Puppe about finding conditions ensuring the "formality" of G-actions.
We give an example of a space with the property that every orientable fibration with the fiber is rationally totally non-cohomologous to zero, while there exists a nontrivial derivation of the rational cohomology of of negative degree.
In this paper we present an approximation to the de Rham theorem for simplicial sets with any coefficients based, using simplicial techniques, on Poincaré's lemma and q-extendability.
Les approches de Whitehead et de Ganea, conceptuellement différentes, permettent toutes deux la définition de la catégorie de Lusternik et Schnirelmann. Le premier auteur a montré qu’elles existent dans le cadre des catégories à modèles de Quillen et qu’elles coïncident lorsqu’est vérifié un axiome supplémentaire non autodual, l’axiome du cube. Nous étendons ici cette étude au cadre de catégories à modèles non nécessairement propres et ne vérifiant pas l’axiome du cube. Pour cela, l’hypothèse globale...
Currently displaying 1 –
17 of
17