Pro-isomorphisms of homology towers.
Let be a continuum. Two maps are said to be pseudo-homotopic provided that there exist a continuum , points and a continuous function such that for each , and . In this paper we prove that if is the pseudo-arc, is one-to-one and is pseudo-homotopic to , then . This theorem generalizes previous results by W. Lewis and M. Sobolewski.
Nous considérons les groupes de cobordisme (définis par Arnold) d’immersions lagrangiennes exactes de variétés compactes dans . Grâce au théorème de Gromov-Lees, leur calcul est celui des groupes d’homotopie de spectres de Thom construits sur les espaces (cas non-orienté, le calcul est alors dû à Smith et Stong) et (cas orienté, groupes dont nous calculons la “partie paire”, et sur la “partie impaire” desquels nous donnons des informations). Nous calculons aussi les images de ces groupes dans...
À toute algèbre de cochaînes sont associés les invariants numériques suivants : , et qui approximent, pour tout corps et lorsque , la catégorie au sens de Lusternik-Schnirelmann de l’espace . Nous montrons dans cet article que ces trois invariants sont deux à deux distincts.
Cette note résume une étude sur la comparaison des relations d’homotopie et d’isotopie dans les problèmes suivants : disjonction de deux sphères plongées, plongement de sphères dans une variété de dimension 3 satisfaisant à la conjecture de Poincaré. On mentionne une application aux décompositions en anses des variétés de dimension 4.
Let be a 1-connected closed manifold of dimension and be the space of free loops on . M.Chas and D.Sullivan defined a structure of BV-algebra on the singular homology of , . When the ring of coefficients is a field of characteristic zero, we prove that there exists a BV-algebra structure on the Hochschild cohomology which extends the canonical structure of Gerstenhaber algebra. We construct then an isomorphism of BV-algebras between and the shifted homology . We also prove that the...
We show that an orientable fibration whose fiber has a homotopy type of homogeneous space with rank is totally non homologous to zero for rational coefficients. The Jacobian formed by invariant polynomial under the Weyl group of plays a key role in the proof. We also show that it is valid for mod. coefficients if does not divide the order of the Weyl group of .