Displaying 81 – 100 of 127

Showing per page

On the first homology of Peano continua

Gregory R. Conner, Samuel M. Corson (2016)

Fundamenta Mathematicae

We show that the first homology group of a locally connected compact metric space is either uncountable or finitely generated. This is related to Shelah's well-known result (1988) which shows that the fundamental group of such a space satisfies a similar condition. We give an example of such a space whose fundamental group is uncountable but whose first homology is trivial, showing that our result does not follow from Shelah's. We clarify a claim made by Pawlikowski (1998) and offer a proof of the...

Phantom maps and purity in modular representation theory, I

D. Benson, G. Gnacadja (1999)

Fundamenta Mathematicae

Let k be a field and G a finite group. By analogy with the theory of phantom maps in topology, a map f : M → ℕ between kG-modules is said to be phantom if its restriction to every finitely generated submodule of M factors through a projective module. We investigate the relationships between the theory of phantom maps, the algebraic theory of purity, and Rickard's idempotent modules. In general, adding one to the pure global dimension of kG gives an upper bound for the number of phantoms we need...

Currently displaying 81 – 100 of 127