Displaying 181 – 200 of 371

Showing per page

Loop spaces and homotopy operations

David Blanc (1997)

Fundamenta Mathematicae

We describe an obstruction theory for an H-space X to be a loop space, in terms of higher homotopy operations taking values in π * X . These depend on first algebraically “delooping” the Π-algebras π * X , using the H-space structure on X, and then trying to realize the delooped Π-algebra.

Measurable cardinals and fundamental groups of compact spaces

Adam Przeździecki (2006)

Fundamenta Mathematicae

We prove that all groups can be realized as fundamental groups of compact spaces if and only if no measurable cardinals exist. If the cardinality of a group G is nonmeasurable then the compact space K such that G = π₁K may be chosen so that it is path connected.

Miller spaces and spherical resolvability of finite complexes

Jeffrey Strom (2003)

Fundamenta Mathematicae

Let 𝒜 be a fixed collection of spaces, and suppose K is a nilpotent space that can be built from spaces in 𝒜 by a succession of cofiber sequences. We show that, under mild conditions on the collection 𝒜, it is possible to construct K from spaces in 𝒜 using, instead, homotopy (inverse) limits and extensions by fibrations. One consequence is that if K is a nilpotent finite complex, then ΩK can be built from finite wedges of spheres using homotopy limits and extensions by fibrations. This is applied...

Multiplication is Discontinuous in the Hawaiian Earring Group (with the Quotient Topology)

Paul Fabel (2011)

Bulletin of the Polish Academy of Sciences. Mathematics

The natural quotient map q from the space of based loops in the Hawaiian earring onto the fundamental group provides a naturally occuring example of a quotient map such that q × q fails to be a quotient map. With the quotient topology, this example shows π₁(X,p) can fail to be a topological group if X is locally path connected.

N-determined 2-compact groups. I

Jesper M. Møller (2007)

Fundamenta Mathematicae

This is the first part of a paper that classifies 2-compact groups. In this first part we formulate a general classification scheme for 2-compact groups in terms of their maximal torus normalizer pairs. We apply this general classification procedure to the simple 2-compact groups of the A-family and show that any simple 2-compact group that is locally isomorphic to PGL(n+1,ℂ) is uniquely N-determined. Thus there are no other 2-compact groups in the A-family than the ones we already know. We also...

N-determined 2-compact groups. II

Jesper M. Møller (2007)

Fundamenta Mathematicae

This is the second part of a paper about the classification of 2-compact groups. In the first part we set up a general classification procedure and applied it to the simple 2-compact groups of the A-family. In this second part we deal with the other simple Lie groups and with the exotic simple 2-compact group DI(4). We show that all simple 2-compact groups are uniquely N-determined and conclude that all connected 2-compact groups are uniquely N-determined. This means that two connected 2-compact...

Nilpotency of self homotopy equivalences with coefficients

Maxence Cuvilliez, Aniceto Murillo, Antonio Viruel (2011)

Annales de l’institut Fourier

In this paper we study the nilpotency of certain groups of self homotopy equivalences. Our main goal is to extend, to localized homotopy groups and/or homotopy groups with coefficients, the general principle of Dror and Zabrodsky by which a group of self homotopy equivalences of a finite complex which acts nilpotently on the homotopy groups is itself nilpotent.

Currently displaying 181 – 200 of 371