Displaying 541 – 560 of 689

Showing per page

Sur le rôle de la monodromie entière dans la topologie des singularités

Françoise Michel, Claude Weber (1986)

Annales de l'institut Fourier

Nous considérons l’action de la monodromie sur l’homologie de la fibre de Milnor d’une singularité complexe. Cette action est plus compliquée que prévu : en effet nous montrons que, sur Z , elle n’est, en général, pas somme directe de modules cycliques. Nous donnons également des exemples prouvant que la monodromie rationnelle ne détermine pas la monodromie entière et que la monodromie entière ne détermine pas la topologie.

Sur le théorème de Poincaré-Bendixson

Robert Moussu, Fernand Pelletier (1974)

Annales de l'institut Fourier

Le but de cet article est de démontrer deux conditions nécessaires de non existence d’ensemble minimal exceptionnel dans un feuilletage F de codimension 1 d’une variété compacte M . La première est métrique ; elle porte sur la croissance des feuilles et elle répond à une conjecture de Plante. La seconde est homotopique, elle porte sur les groupes fondamentaux de M et des feuilles de F .De ces deux conditions, nous déduisons deux conditions nécessaires et suffisantes pour qu’un feuilletage soit sans...

Sur les feuilletages des variétés fibrées

Hamidou Dathe, Cédric Tarquini (2008)

Annales mathématiques Blaise Pascal

Nous construisons un feuilletage exotique de classe C 1 sur tout fibré hyperbolique de genre 1 . Nous montrons égalemnt des théorèmes de rigidité des feuilletages modèles sur certains fibrés pseudo-Anosov.

Sur les ouverts des CW-complexes et les fibrés de Serre

Robert Cauty (1992)

Colloquium Mathematicae

M. Steinberger et J. West ont prouvé dans [7] qu’un fibré de Serre p:E → B entre CW-complexes a la propriété de relèvement des homotopies par rapport aux k-espaces. Malheureusement, leur démonstration contient une légère erreur. Ils affirment que certains ensembles (notés U et p - 1 U × U ) sont des CW-complexes car ce sont des ouverts de CW-complexes. Ceci est généralement faux, et notre premier objectif dans cette note est de donner des exemples d’ouverts de CW-complexes n’admettant aucune décomposition...

Symplectic groups are N-determined 2-compact groups

Aleš Vavpetič, Antonio Viruel (2006)

Fundamenta Mathematicae

We show that for n ≥ 3 the symplectic group Sp(n) is as a 2-compact group determined up to isomorphism by the isomorphism type of its maximal torus normalizer. This allows us to determine the integral homotopy type of Sp(n) among connected finite loop spaces with maximal torus.

The ℤ₂-cohomology cup-length of real flag manifolds

Július Korbaš, Juraj Lörinc (2003)

Fundamenta Mathematicae

Using fiberings, we determine the cup-length and the Lyusternik-Shnirel’man category for some infinite families of real flag manifolds O ( n + . . . + n q ) / O ( n ) × . . . × O ( n q ) , q ≥ 3. We also give, or describe ways to obtain, interesting estimates for the cup-length of any O ( n + . . . + n q ) / O ( n ) × . . . × O ( n q ) , q ≥ 3. To present another approach (combining well with the “method of fiberings”), we generalize to the real flag manifolds Stong’s approach used for calculations in the ℤ₂-cohomology algebra of the Grassmann manifolds.

The computation of Stiefel-Whitney classes

Pierre Guillot (2010)

Annales de l’institut Fourier

The cohomology ring of a finite group, with coefficients in a finite field, can be computed by a machine, as Carlson has showed. Here “compute” means to find a presentation in terms of generators and relations, and involves only the underlying (graded) ring. We propose a method to determine some of the extra structure: namely, Stiefel-Whitney classes and Steenrod operations. The calculations are explicitly carried out for about one hundred groups (the results can be consulted on the Internet).Next,...

Currently displaying 541 – 560 of 689