Higher order almost tangent geometry and non-autonomous Lagrangian dynamics
Extending work of many authors we calculate the higher simple structure sets of lens spaces in the sense of surgery theory with the fundamental group of arbitrary order. As a corollary we also obtain a calculation of the simple structure sets of the products of lens spaces and spheres of dimension grater or equal to .
It is well-known that the question of existence of a star product on a Poisson manifold is open and only some partial results are known [see the author, J. Geom. Phys. 9, No. 1, 45-73 (1992; Zbl 0761.16012)].In the paper under review, the author proves the existence of the star products for the Poisson structures of the following type with , for some .
In this paper, we consider several invariant complex structures on a compact real nilmanifold, and we study relations between invariant complex structures and Hodge numbers.
Based on some analogies with the Hodge theory of isolated hypersurface singularities, we define Hodge–type numerical invariants of any, not necessarily algebraic, link in a three–sphere. We call them H–numbers. They contain the same amount of information as the (non degenerate part of the) real Seifert matrix. We study their basic properties, and we express the Tristram–Levine signatures and the higher order Alexander polynomial in terms of them. Motivated by singularity theory, we also introduce...