Holonomie et cycle évanouissant
On démontre que l’holonomie est non triviale au voisinage d’un cycle évanouissant au moyen d’un critère d’Imanishi et on donne une démonstration non standard de ce dernier.
On démontre que l’holonomie est non triviale au voisinage d’un cycle évanouissant au moyen d’un critère d’Imanishi et on donne une démonstration non standard de ce dernier.
Dans le présent travail, nous obtenons plusieurs caractérisations de feuilles propres et de feuilles denses des feuilletages transversalement de codimension 1 de variétés indifféremment compactes et non compactes.Ces caractéristiques sont algébriques et concernent la structure des semi-groupes sécants d’homotopie et d’homologie que nous avons définis et utilisés ailleurs.Par l’intermédiaire de corollaires sur l’existence d’holonomie dans l’adhérence des feuilles exceptionnelles, nous en déduisons...
We present short direct proofs of two known properties of complete flat manifolds. They say that the diffeomorphism classes of m-dimensional complete flat manifolds form a finite set and that each element of is represented by a manifold with finite holonomy group.
This paper contains a description of various geometric constructions associated with fibre bundles, given in terms of important algebraic object, the “twisting cochain". Our examples include the Chern-Weil classes, the holonomy representation and the so-called cyclic Chern character of Bismut and others (see [2, 11, 27]), also called the Bismut’s class. The later example is the principal one for us, since we are motivated by the attempt to find an algebraic approach to the Witten’s index formula....
It is shown that deleting a point from the topologist's sine curve results in a locally compact connected space whose autohomeomorphism group is not a topological group when equipped with the compact-open topology.
Erdős space is the “rational” Hilbert space, that is, the set of vectors in ℓ² with all coordinates rational. Erdős proved that is one-dimensional and homeomorphic to its own square × , which makes it an important example in dimension theory. Dijkstra and van Mill found topological characterizations of . Let , n ∈ ℕ, be the n-dimensional Menger continuum in , also known as the n-dimensional Sierpiński carpet, and let D be a countable dense subset of . We consider the topological group of all...
We prove that the number of linearly independent Vassiliev invariants for an r-component link of order n, which derived from the HOMFLY polynomial, is greater than or equal to min{n,[(n+r-1)/2]}.
In this paper we prove that a wild knot K which is the limit set of a Kleinian group acting conformally on the unit 3-sphere, with its standard metric, is homogeneous: given two points p, q ∈ K, there exists a homeomorphism f of the sphere such that f(K) = K and f(p) = q. We also show that if the wild knot is a fibered knot then we can choose an f which preserves the fibers.