Heegaard Floer homology and alternating knots.
We show that any Heegaard splitting of the pair of the solid torus (≅D2xS1) and its core loop (an interior point xS1) is standard, using the notion of Heegaard splittings of pairs of 3-manifolds and properly imbedded graphs, which is defined in this paper.
We prove that the natural HNN-extensions of the fractional Fibonacci groups are the fundamental groups of high-dimensional knot complements. We also give some characterization and interpretation of these knots. In particular we show that some of them are 2-knots.