Hopf algebra structure on topological Hochschild homology.
The aim of the present paper is to study Hopfian and Co-Hopfian objects in categories like the category of rings, the module categories A-mod and mod-A for any ring A. Using Stone's representation theorem any Boolean ring can be regarded as the ring A of clopen subsets of compact Hausdorff totally disconnected space X. It turns out that the Boolean ring A will be Hopfian (resp. co-Hopfian) if and only if the space X is co-Hopfian (resp. Hopfian) in the category Top. For any compact Hausdorff space...
Let p: M → B be a proper surjective map defined on an (n+2)-manifold such that each point-preimage is a copy of a hopfian n-manifold. Then we show that p is an approximate fibration over some dense open subset O of the mod 2 continuity set C’ and C’ ∖ O is locally finite. As an application, we show that a hopfian n-manifold N is a codimension-2 fibrator if χ(N) ≠ 0 or
We collect several results on the determination of hyperbolic knots by means of their cyclic branched covers. We construct examples of knots having two common cyclic branched covers. Finally, we briefiy discuss the problem of determination of hyperbolic links.