Displaying 421 – 440 of 643

Showing per page

Quasipositivity and new knot invariants.

Lee Rudolph (1989)

Revista Matemática de la Universidad Complutense de Madrid

This is a survey (including new results) of relations ?some emergent, others established? among three notions which the 1980s saw introduced into knot theory: quasipositivity of a link, the enhanced Milnor number of a fibered link, and the new link polynomials. The Seifert form fails to determine these invariants; perhaps there exists an ?enhanced Seifert form? which does.

Quotients jacobiens d'applications polynomiales

Enrique Artal Bartolo, Philippe Cassou-Noguès, Hélène Maugendre (2003)

Annales de l’institut Fourier

Soit φ : = ( f , g ) : 2 2 f et g sont des applications polynomiales. Nous établissons le lien qui existe entre le polygone de Newton de la courbe réunion du discriminant et du lieu de non-propreté de φ et la topologie des entrelacs à l’infini des courbes affines f - 1 ( 0 ) et g - 1 ( 0 ) . Nous en déduisons alors des conséquences liées à la conjecture du jacobien.

Racks and orbits of dressing transformations

A. A. Balinsky (2000)

Commentationes Mathematicae Universitatis Carolinae

A new algebraic structure on the orbits of dressing transformations of the quasitriangular Poisson Lie groups is provided. This gives the topological interpretation of the link invariants associated with the Weinstein-Xu classical solutions of the quantum Yang-Baxter equation. Some applications to the three-dimensional topological quantum field theories are discussed.

Representations of (1,1)-knots

Alessia Cattabriga, Michele Mulazzani (2005)

Fundamenta Mathematicae

We present two different representations of (1,1)-knots and study some connections between them. The first representation is algebraic: every (1,1)-knot is represented by an element of the pure mapping class group of the twice punctured torus PMCG₂(T). Moreover, there is a surjective map from the kernel of the natural homomorphism Ω:PMCG₂(T) → MCG(T) ≅ SL(2,ℤ), which is a free group of rank two, to the class of all (1,1)-knots in a fixed lens space. The second representation is parametric: every...

Representations of the Kauffman bracket skein algebra of the punctured torus

Jea-Pil Cho, Răzvan Gelca (2014)

Fundamenta Mathematicae

We describe the action of the Kauffman bracket skein algebra on some vector spaces that arise as relative Kauffman bracket skein modules of tangles in the punctured torus. We show how this action determines the Reshetikhin-Turaev representation of the punctured torus. We rephrase our results to describe the quantum group quantization of the moduli space of flat SU(2)-connections on the punctured torus with fixed trace of the holonomy around the boundary.

Currently displaying 421 – 440 of 643