Behavior of knot invariants under genus 2 mutation.
We give a solution to a part of Problem 1.60 in Kirby's list of open problems in topology, thus answering in the positive the question raised in 1987 by J. Przytycki.
K. Habiro gave a neccesary and sufficient condition for knots to have the same Vassiliev invariants in terms of -moves. In this paper we give another geometric condition in terms of Brunnian local moves. The proof is simple and self-contained.
Nous catégorifions explicitement les coefficients de la matrice de la représentation de Burau en utilisant des méthodes géométriques élémentaires. Nous montrons que cette catégorification est fidèle dans le sens où elle détecte la tresse triviale.
We extend Rouquier’s categorification of the braid groups by complexes of Soergel bimodules to the virtual braid groups.
We present an elementary description of Khovanov's homology of tangles [K2], in the spirit of Viro's paper [V]. The formulation here is over the polynomial ring ℤ[c], unlike [K2] where the theory was presented over the integers only.