-covered foliations of hyperbolic 3-manifolds.
We study the growth of the rank of subgroups of finite index in residually finite groups, by relating it to the notion of cost. As a by-product, we show that the ‘rank vs. Heegaard genus’ conjecture on hyperbolic 3-manifolds is incompatible with the ‘fixed price problem’ in topological dynamics.
We consider a quotient space of the Bers boundary of Teichmüller space, which we call the reduced Bers boundary, by collapsing each quasi-conformal deformation space lying there into a point.This boundary turns out to be independent of the basepoint, and the action of the mapping class group extends continuously to this boundary.This is an affirmative answer to Thurston’s conjecture.He also conjectured that this boundary is homeomorphic to the unmeasured lamination space by the correspondence coming...
We determine parts of the contact homology of certain contact 3-manifolds in the framework of open book decompositions, due to Giroux.We study two cases: when the monodromy map of the compatible open book is periodic and when it is pseudo-Anosov. For an open book with periodic monodromy, we verify the Weinstein conjecture. In the case of an open book with pseudo-Anosov monodromy, suppose the boundary of a page of the open book is connected and the fractional Dehn twist coefficient equals , where...
We prove that a closed 3-orbifold that fibers over a hyperbolic polygonal 2-orbifold admits a family of hyperbolic cone structures that are viewed as regenerations of the polygon, provided that the perimeter is minimal.
The paper studies the first homology of finite regular branched coverings of a universal Borromean orbifold called B 4,4,4ℍ3. We investigate the irreducible components of the first homology as a representation space of the finite covering transformation group G. This gives information on the first betti number of finite coverings of general 3-manifolds by the universality of B 4,4,4. The main result of the paper is a criterion in terms of the irreducible character whether a given irreducible representation...