L2-Topological invariants of 3-manifolds.
Soit un entier . Une 3-variété est dite -périodique si et seulement si le groupe cyclique agit semi-librement sur avec un cercle comme l’ensemble des points fixes. Dans cet article, nous utilisons les invariants quantiques pour établir des conditions nécessaires pour qu’une 3-variété soit périodique.
Given a finite-volume hyperbolic 3-manifold, we compose a lift of the holonomy in with the -dimensional irreducible representation of in . In this paper we give local coordinates of the -character variety around the character of this representation. As a corollary, this representation is isolated among all representations that are unipotent at the cusps.
In this paper we construct, for each aspherical oriented -manifold , a -dimensional class in the -homology of whose norm combined with the Gromov simplicial volume of gives a characterization of those nonzero degree maps from to which are homotopic to a covering map. As an application we characterize those degree one maps which are homotopic to a homeomorphism in term of isometries between the bounded cohomology groups of and .