Quadrisecants give new lower bounds for the ropelength of a knot.
This paper is devoted to new algebraic structures, called qualgebras and squandles. Topologically, they emerge as an algebraic counterpart of knotted 3-valent graphs, just like quandles can be seen as an "algebraization" of knots. Algebraically, they are modeled after groups with conjugation and multiplication/squaring operations. We discuss basic properties of these structures, and introduce and study the notions of qualgebra/squandle 2-cocycles and 2-coboundaries. Knotted 3-valent graph invariants...
This article establishes the algebraic covering theory of quandles. For every connected quandle Q with base point q ∈ Q, we explicitly construct a universal covering p: (Q̃,q̃̃) → (Q,q). This in turn leads us to define the algebraic fundamental group , where Adj(Q) is the adjoint group of Q. We then establish the Galois correspondence between connected coverings of (Q,q) and subgroups of π₁(Q,q). Quandle coverings are thus formally analogous to coverings of topological spaces, and resemble Kervaire’s...
We give criteria for framed links and 3-manifolds to be periodic of prime order. As applications we show that the Poincaré sphere is of periodicity 2, 3, 5 only and the Brieskorn sphere Σ(2,3,7) is of periodicity 2, 3, 7 only.
We propose a direction of study of nonabelian theta functions by establishing an analogy between the Weyl quantization of a one-dimensional particle and the metaplectic representation on the one hand, and the quantization of the moduli space of flat connections on a surface and the representation of the mapping class group on the space of nonabelian theta functions on the other. We exemplify this with the cases of classical theta functions and of the nonabelian theta functions for the gauge group...
We describe the kernel of the canonical map from the Floyd boundary of a relatively hyperbolic group to its Bowditch boundary. Using the Floyd completion we further prove that the property of relative hyperbolicity is invariant under quasi-isometric maps. If a finitely generated group admits a quasi-isometric map into a relatively hyperbolic group then is itself relatively hyperbolic with respect to a system of subgroups whose image under is situated within a uniformly bounded distance...
This is a survey (including new results) of relations ?some emergent, others established? among three notions which the 1980s saw introduced into knot theory: quasipositivity of a link, the enhanced Milnor number of a fibered link, and the new link polynomials. The Seifert form fails to determine these invariants; perhaps there exists an ?enhanced Seifert form? which does.
Soit l’ensemble des points d’un groupe algébrique semi-simple connexe de rang relatif un sur un corps local ultramétrique. Nous décrivons tous les sous-groupes discrets de type fini sans torsion de qui agissent proprement et cocompactement sur par multiplication à gauche et à droite. Nous montrons qu’après une petite déformation dans un tel sous-groupe agit encore librement, proprement discontinûment et cocompactement sur .
Soit où et sont des applications polynomiales. Nous établissons le lien qui existe entre le polygone de Newton de la courbe réunion du discriminant et du lieu de non-propreté de et la topologie des entrelacs à l’infini des courbes affines et . Nous en déduisons alors des conséquences liées à la conjecture du jacobien.