The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We create a framework for odd Khovanov homology in the spirit of Bar-Natan's construction for the ordinary Khovanov homology. Namely, we express the cube of resolutions of a link diagram as a diagram in a certain 2-category of chronological cobordisms and show that it is 2-commutative: the composition of 2-morphisms along any 3-dimensional subcube is trivial. This allows us to create a chain complex whose homotopy type modulo certain relations is a link invariant. Both the original and the odd Khovanov...
We construct a cohomology transfer for n-fold ramified covering maps. Then we define a very general concept of transfer for ramified covering maps and prove a classification theorem for such transfers. This generalizes Roush's classification of transfers for n-fold ordinary covering maps. We characterize those representable cofunctors which admit a family of transfers for ramified covering maps that have two naturality properties, as well as normalization and stability. This is analogous to Roush's...
We employ the sl(2) foam cohomology to define a cohomology theory for oriented framed tangles whose components are labeled by irreducible representations of . We show that the corresponding colored invariants of tangles can be assembled into invariants of bigger tangles. For the case of knots and links, the corresponding theory is a categorification of the colored Jones polynomial, and provides a tool for efficient computations of the resulting colored invariant of knots and links. Our theory is...
In this note, we prove the existence of a tri-graded Khovanov-type bicomplex (Theorem 1.2). The graded Euler characteristic of the total complex associated with this bicomplex is the colored Jones polynomial of a link. The first grading of the bicomplex is a homological one derived from cabling of the link (i.e., replacing a strand of the link by several parallel strands); the second grading is related to the homological grading of ordinary Khovanov homology; finally, the third grading is preserved...
We express the signature of an alternating link in terms of some combinatorial characteristics of its diagram.
We investigate the Khovanov-Rozansky invariant of a certain tangle and its compositions. Surprisingly the complexes we encounter reduce to ones that are very simple. Furthermore, we discuss a "local" algorithm for computing Khovanov-Rozansky homology and compare our results with those for the "foam" version of sl₃-homology.
We formulate a conjectural formula for Khovanov's invariants of alternating knots in terms of the Jones polynomial and the signature of the knot.
Currently displaying 1 –
20 of
196