G-actions and the Fundamental Group.
The notion of an (n,r)-coloring for a link diagram generalizes the idea of an n-coloring introduced by R. H. Fox. For any positive integer n the various (n,r)-colorings of a diagram for an oriented link l correspond in a natural way to the periodic points of the representation shift of the link. The number of (n,r)-colorings of a diagram for a satellite knot is determined by the colorings of its pattern and companion knots together with the winding number.
If a paracompact Hausdorff space X admits a (classical) universal covering space, then the natural homomorphism φ: π₁(X) → π̌₁(X) from the fundamental group to its first shape homotopy group is an isomorphism. We present a partial converse to this result: a path-connected topological space X admits a generalized universal covering space if φ: π₁(X) → π̌₁(X) is injective. This generalized notion of universal covering p: X̃ → X enjoys most of the usual properties, with the possible exception of evenly...
We study classical spin networks with group SU. In the first part, using Gaussian integrals, we compute their generating series in the case where the edges are equipped with holonomies; this generalizes Westbury’s formula. In the second part, we use an integral formula for the square of the spin network and perform stationary phase approximation under some non-degeneracy hypothesis. This gives a precise asymptotic behavior when the labels are rescaled by a constant going to infinity.
We give an algebraic proof of the fact that a generating set of the mapping class group Mg,1 (g ≥ 3) may be obtained by replicating a generating set of M2,1.
The genus 2 Heegaard splittings and decompositions of Seifert manifolds over with 3 exeptional fibres are classified with respect to isotopies and homeomorphisms. In general there are 3 different isotopy classes of Heegaard splittings and 6 different isotopy classes of Heegaard decompositions. Moreover, we determine when a homeomorphism class is not an isotopy class.