groups are almost convex and have a sub-cubic Dehn function.
Page 1 Next
Elder, Murray (2004)
Algebraic & Geometric Topology
Boris Okun, Richard Scott (2011)
Fundamenta Mathematicae
Let W be a Coxeter group and let μ be an inner product on the group algebra ℝW. We say that μ is admissible if it satisfies the axioms for a Hilbert algebra structure. Any such inner product gives rise to a von Neumann algebra containing ℝW. Using these algebras and the corresponding von Neumann dimensions we define -Betti numbers and an -Euler charactersitic for W. We show that if the Davis complex for W is a generalized homology manifold, then these Betti numbers satisfy a version of Poincaré...
Wolfgang Lück, John Lott (1995)
Inventiones mathematicae
Józef Dodziuk (1995/1996)
Séminaire de théorie spectrale et géométrie
Li, Tao (2002)
Geometry & Topology
Bachman, David, Cooper, Daryl, White, Matthew E. (2004)
Algebraic & Geometric Topology
Andrei Ratiu (1995)
Bulletin de la Société Mathématique de France
André Gramain (1992)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Calegari, Danny (2001)
Algebraic & Geometric Topology
Etgü, Tolga (2001)
Algebraic & Geometric Topology
Akbulut, Selman, Ozbagci, Burak (2001)
Geometry & Topology
Abdou Koulder Ben-Naoum, Yves Félix (1997)
Annales de la Faculté des sciences de Toulouse : Mathématiques
John B. Etnyre, Lenhard L. Ng, Vera Vértesi (2013)
Journal of the European Mathematical Society
In 1997, Chekanov gave the first example of a Legendrian nonsimple knot type: the knot. Epstein, Fuchs, and Meyer extended his result by showing that there are at least different Legendrian representatives with maximal Thurston-Bennequin number of the twist knot with crossing number . In this paper we give a complete classification of Legendrian and transverse representatives of twist knots. In particular, we show that has exactly Legendrian representatives with maximal Thurston–Bennequin...
Sebastian Baader, Masaharu Ishikawa (2009)
Annales de la faculté des sciences de Toulouse Mathématiques
In this paper we clarify the relationship between ribbon surfaces of Legendrian graphs and quasipositive diagrams by using certain fence diagrams. As an application, we give an alternative proof of a theorem concerning a relationship between quasipositive fiber surfaces and contact structures on . We also answer a question of L. Rudolph concerning moves of quasipositive diagrams.
Mrowka, Tomasz, Rollin, Yann (2006)
Algebraic & Geometric Topology
Luo, Feng, Stong, Richard (2002)
Geometry & Topology
Rasmussen, Jacob (2004)
Geometry & Topology
B. Perron (1989)
Annales scientifiques de l'École Normale Supérieure
Pierre Vogel (1994/1995)
Séminaire Bourbaki
Nafaa Chbili (2001)
Annales de l’institut Fourier
Soit un entier . Une 3-variété est dite -périodique si et seulement si le groupe cyclique agit semi-librement sur avec un cercle comme l’ensemble des points fixes. Dans cet article, nous utilisons les invariants quantiques pour établir des conditions nécessaires pour qu’une 3-variété soit périodique.
Page 1 Next